冀教版数学知识点总结(六上)
六年级数学上册知识点总结
第一单元圆和扇形
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。2、圆的特征:外形美观,易滚动。
3、圆心o:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。二、扇形
扇形是由两条半径和圆上的一段曲线围成的。扇形都有一个角,角的顶点在圆心。
第二单元比和比例
一、比
1、比表示两个数相除。两个数相除的结果叫做比值。
2、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5
3、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。例:12∶20=12÷20=0.612∶20读作:12比20
4、区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
5、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。6、化简比:化简之后结果还是一个比,不是一个数。可以写成比,也可以写成分数的形式。
(1)、用比的前项和后项同时除以它们的最大公约数。
1/4
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。5、比和除法、分数的区别:除法被除数分数比分子前项除号(÷)分数线()比号(∶)除数(不能为0)分母(不能为0)后项(不能为0)商不变性质分数的基本性质比的基本性质除法是一种运算分数是一个数比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。二、比例表示两个比相等的式子叫做比例。判断两个比能不能组成比例,要看它们的比值是不是相等。组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。在比例里,两个外项的积等于两个内项的积,这是比例的基本性质。如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘,它们的积相等。第三单元百分数一、百分数的意义:表示一个数是另一个数的百分之几。
注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。(5)小数化分数:把小数化成分母是10、100、1000等的分数再化简。(6)分数化小数:分子除以分母。二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。求甲比乙多百分之几(甲-乙)÷乙求乙比甲少百分之几(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
2/4
4、已知一个数的百分之几是多少,求这个数。部分量÷百分率=一个数(单位“1”)5、折扣折扣、打折的意义:几折就是十分之几也就是百分之几十折扣成数几分之几百分之几小数通用八折八成,十分之八,百分之八十,0.8八五折八成五十分之八点五,百分之八十五,0.85五折五成十分之五百分之五十0.5半价6、纳税缴纳的税款叫做应纳税额。(应纳税额)÷(总收入)=(税率)(总收入)×(税率)=(应纳税额)7、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。(3)利息与本金的比值叫做利率。利息=本金×利率×时间8、百分数应用题型分类
(1)求甲是乙的百分之几(甲÷乙)=百分之几
(2)求甲比乙多(少)百分之几(甲-乙)÷乙=百分之几或(乙-甲)÷乙=百分之几例
①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50乙比甲少20%,少10,甲是多少?10÷20%=50乙比甲少20%,少10,乙是多少?10÷20%-10=40
乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)50÷(1+25%)=40
第四单元比例尺
1、图上距离和实际距离的比,叫做这幅图的比例尺。2、图上距离实际距离=比例尺
3、求比例尺时要特别注意:图上距离和实际距离单位统一再化简。
比例尺是一个比,不应带计量单位。
为了计算简便,通常把比例尺写成前项(后项)为1的比。
4、根据比例尺的表现形式比例尺可分为:数值比例尺、线段比例尺5、线段比例尺:
图上1厘米表示实际距离20千米
6、数值比例尺:1:201*000图上1厘米表示实际距离201*000厘米或图上1厘米表示实际距离20千米
3/4
第六单元圆的周长和面积
一、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定不变的数,叫做圆周率,用字母π表示。即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)周长公式:c=πd,c=2πr注:圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c34、半圆周长=圆周长一半+直径=2πr=πr+d二、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。圆的半径=长方形的宽
圆的周长的一半=长方形的长长方形面积=长×宽
所以:圆的面积=长方形的面积=长×宽=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果:r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4则:S1∶S2∶S3=4∶9∶16
4、圆环面积=大圆面积小圆面积=πr大2-πr小2=π(r大2-r小2)5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。注:一个圆的半径增加a厘米,周长就增加2πa厘米
一个圆的直径增加b厘米,周长就增加πb厘米
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π7、常用数据π=3.142π=6.28
第七单元、统计
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。2、常用统计图的优点:
(1)、条形统计图直观显示每个数量的多少。
(2)、折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。(3)、扇形统计图直观显示部分和总量的关系。
4/4
扩展阅读:【人教版】小学数学六年级上册知识点总结
【人教版】小学数学六年级上册知识点总结
【编者按】小学六年级数学是小学阶段学习数学的最后一年,它是同学们进入中学学好数学的关键。在上册中,同学们会学习到新的本领,比如:用两个数据来确定物理的位置,分数计算,用圆、百分数的知识来解决生活中的问题等。一、目标与要求
1.使学生能在方格纸上用数对确定位置。
2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。3.使学生理解倒数的意义,掌握求倒数的方法。
4.理解并掌握分数除法的计算方法,会进行分数除法计算。
5.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。
6.使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
7.使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。二、重、难点
1.能用数对表示物体的位置,正确区分列和行的顺序;
2.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法;3.掌握求倒数的方法;
4.圆的周长和圆周率的意义,圆周长公式的推导过程;5.百分数的意义,求一个数是另一个数的百分之几的应用题;
6.理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;7.理解比的意义。三、知识点概念总结
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。2.分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。3.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。6.分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。7.整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。8.小数的倒数
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。10.分数除法:分数除法是分数乘法的逆运算。11.分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。14.比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值
相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。比例的性质用于解比例。
17.比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
18.比和比例的意义
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。因此,比和比例的意义也有所不同。而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:
比和比例有着密切联系。比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。比例是由比组成的,如果没有两种量的比,比例就不会存在。比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。如果两个比相等,那么这两个比就可以组成比例。成比例的两个比的比值一定相等。
20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
21.圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。圆的半径或直径决定圆的大小,圆心决定圆的位置。
24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。25.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
26.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)(3)已知周长:S=π[c÷(2π)]29.百分数与分数的区别
(1)意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数还可以表示两数之间的倍数关系.
(2)应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。
(3)书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。30.百分数应用
百分数一般有三种情况:①100%以上,如:增长率、增产率等。②100%以下,如:
2发芽率、成长率等。③刚好100%,如:正确率,合格率等。31.百分数的意义
百分数只可以表示分率,而不能表示具体量,所以不能带单位。百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。32.日常应用
每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。20%、10%让人一目了然,既清楚又简练。知识点扩展1.圆的定义
几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO
8.百分数的由来
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
友情提示:本文中关于《冀教版数学知识点总结(六上)》给出的范例仅供您参考拓展思维使用,冀教版数学知识点总结(六上):该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《冀教版数学知识点总结(六上)》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/472450.html
- 上一篇:高中数学公式总结全面版
- 下一篇:高中政治知识点总结(一)