气象中的统计方法总结
中国近20年来气象统计预报综述
中国近20年来气象统计预报综述谢炯光曾琮(广东省气象台)
摘要
近20年来,多元统计分析方法有了长足的进步,涌现出不少新方法、新技术。本文着重介绍了近20年来气象统计预报在中国气象业务科研中的一些应用和发展,主要从多元统计分析意义上来选材。
关键词:多元分析、气象统计、预报。
一、前言
气象统计预报在中国气象业务预报和科研工作中占有重要的位置,特别是在模式统计释用及中长期预报业务中,统计预报更是扮演着一个重要的角色,多元分析中的回归分析、典型相关分析、EOF分析等更是气象预报和分析不可少缺的工具。近20年来,气象统计预报在中国取得了长足的发展。本文主要综述统计方法在气象预报业务中的各个方面的应用及其所取得的一些成绩。
二、多元统计分析在气象预报业务中的应用1、回归分析
广东、江西、河北、辽宁等气象局[1]用0、1权重回归、逐步回归、多元回归等方法,得出晴雨MOS预报方程。1978年曹鸿兴等、史久恩等[2]用逐步回归建立最高、最低气温预报方程。新疆自治区气象台张家宝等[3]以预报员经验为基础,采用完全预报(PerfectProgMethod)方法,应用0、1权重回归建立了有无寒潮的预报。上海气象台丁长根、黄家鑫[4]用逐步回归建立U、V和S(全风速)预报方程。1965年W.F.Massy[5]提出的主成份回归、1970年Hoerl和Kennard[6]提出的岭估计(Ridgeestimate)以及Webster等人[7]提出的特征根回归(Latentrootregression,LRR)对在回归分析中出现复共线性(Multi-collinearity)有较好的处理。冯耀煌[8]在预报集成中,应用了岭回归技术,李耀先[9]用岭回归作水稻产量年景预测。魏松林[10]用特征根回归建立长春6-8月平均气温的特征根回归。
Furnialhe和Wilson提出的穷尽所有回归的算法,比较彻底地解决了最优回归(即最优子集回归)的问题。张万诚[11]用最优子集回归作低纬高原雨季开始预报。在气象预报的实际工作中,常要考虑多个自变量(预报因子)与多个因变量(预报量)的关系。中国数学家张尧庭[12]解决了这一问题的算法,徐一鸣等[13]用多预报量双重筛选逐步回归作台风路径预报,严华生等[14]用多因变量多自变量建立大气环流--区域水稻产量预报。
引入非线性回归是近年来发展的趋势。冯耀煌等[15]、姜子俊等[16]提出了一种选择非线性最优预报因子和建立非线性预报方程的方法,可用于长、中短期预报。近年来由于数值预报模式的频繁更迭,使模式输出统计预报方法受到新的考验,黄嘉佑等[17]介绍了卡尔曼滤波在天气预报中的应用,刘春霞等[18]用此方法制作了广东省冬季的最低气温预报。近年来,卡尔曼滤波技术在短期气候预测中也得到了应用[19]。2、判别分析
广东省徐闻气象局[20]用二级判别做台风登陆地段的预报。Fisher、Bayes以及逐步判别等虽然在气象实际中广泛应用,但严格地说,这些方法仅当变量为正态分布时才可应用,Logistic判别对变量的基本假设条件较宽,对未经正态检验的变量应用本方法是可行的,且可用于既有连续变量又有多值离散变量的情形。吕纯濂等[21]将Logistic判别引入中国气象界,并研究了二次Logistic判别[22]分析及逐步判别[23]在气象中的应用。3、相关分析
近20年来在气象统计中用得较多的主要有典型相关(CCA)分析和奇异值分解(SVD)方法。CCA是提取两个气象场的最大线性相关摸态的方法。朱盛明、祝浩敏[24]在数值预报的解释应用中用典型相关分析提取有物理意义的预报因子作预报方程。陈嘉玲、谢炯光[25]用典型相关分析作中期冷空气预报。黄嘉佑[26]用典型相关分析作副高的统计动力预报。近年来发展了一种新的CCA改进方法,称为典型相关分析的BP(Barnert和Preisendorfer)方法,在气象统计中也得到了应用[27]。
奇异值分解(SVD)也是提取两个场的最大线性相关摸态的方法,SVD方法可以变成是两个要素场关系的扩大EOF分析。谢炯光等[28]用奇异值分解方法,求出了广东省前汛期(4-6月)西太平洋场海温与广东省降水场的6对奇异向量,来作汛期降水趋势预报。江志红等[29]用SVD方法讨论了中国夏半年降水与北太平洋海温异常的关系。
4、气象场的分解及其应用
50年代中期由Loreng引入到大气科学研究中的主成份分析以及后来发展的扩展经验正交函数、复经验正交函数、旋转主分量分析、R型、Q型因子分析、对应分析、主震荡型(PrincipalOscillationParterns,PPOS)。使气象研究及业务水平进入一个更高层次。
4.1经验正交函数(EOF)分解
章基嘉等[30]应用经验正交函数对亚洲500hPa侯平均环流与我国侯平均气温之关系的时空结构进行分析。用EOF逐年划分自然天气季节,张邦林、丑纪范[31]提出了一种时空综合的经验正交函数分析方法,多数的经验正交函数分解是在标量场上展开的,但风场也用经验正交函数展开,周紫东等[32]、王盘兴[33]]讨论了气象向量场的经验正交函数展开方法及其应用。4.2主成份(主分量)分析及其因子分析
气象分析预报中,常要分析许多变量,而变量间往往互有影响,如何从多个变量中找出很少几个综合性的指标代替原来较多的指标,而且所找到的综合指标又能尽可能多地反映原来数据的信息,而且主成份之间又是相互独立的主成份分析。
何敏等[34]用主分量研究了欧亚地区大气环流年际振荡的时空分布特征,谢炯光[35]用主分量与非线性降维和相似综合作广东月降水量分布预报,陈创买等[36]提出一种气候场的主分量逐步回归预报模型,该模型将气候场的预报变成对气候场主分量的预报,并通过相关分析和逐步回归,求得气候场的主分量与各种不同的因子场的主分量因子之间的联系。用于广东年降水的预报。4.3扩展经验正交函数(EEOF)
1982年Weare和Nasstrom[37]提出的EEOF分解可以得到气象场空间分布结构,也可以得到随时间变化空间分布结构的变化。张先恭等[38]用EEOF做太平洋海表温度与中国降水准3.5年周期变化。
谢炯光[39]提出一种月、季降水预测的新方法,用EEOF分解得到的前期特征向量场,来预测后期的降水场分布特征。4.4复经验正交函数(CEOF)
Rasmusson和Barnetl提出的复经验正交函数(CEOF)[40]能表现出气象场的位相变化及空间传播特征。
黄嘉佑[41]使用复经验正交函数分析中国降水长期变化的准两年周期振动,魏凤英等[42]用CEOF分析了近百年中国东部旱涝的分布及其年际变化特征,符综斌等[43]曾将CEOF分析用于Elnino增暖的振幅和位相变化,毕幕莹[44]用CEOF分析研究了夏季西太平洋副高的振荡。
4.5因子分析、旋转主因子分析(RPC)
将主成份分析向前推进一步,就是因子分析,因子分析又分R型分析和Q型分析两种,我们知道,由于主因子是通过原始变量的线性组合得到的,因而可以了解到其天气意义。但哪一个主因子的天气意义更重要些,可通过因子荷载矩阵进行分析,一般来说因子荷载矩阵越简单越易解释。为此,使每个因子的荷载平方按列向0或1两端分化。使主因子在每个变量上的荷载趋近于1,而在其它变量上的荷载接近于0,这样,就更容易解释主因子的天气意义。这种变换称为旋转主因子分析,一般分正交旋转与斜交旋转两种方式。极大方差旋转是正交旋转,是气象预测、科研业务中最常用的旋转方法。谢炯光等[45]用因子分析和旋转因子分析对西太平洋8个海区进行了分析,对头4个主因子的物理意义进行了初步的解释,进而用它建立了广东省各月降水与海温的预报方程。黄嘉佑[46]用斜旋主分量分析了我国夏季气温及降水场(1951-1987年)的时空特征,王敬方等[47]用旋转主分量(RPC)方法,分析近40年来我国夏季温度变化的规律。4.6对应分析
对应分析是一种综合了R型及Q型因子分析特点的多元统计分析技术,黄嘉佑[48]、李麦村等[49]用该方法发现副高逐月变化曲线与赤道海温变化十分相似,谢炯光[50]用对应分析对4-6月逐月的连续变化进行分型,把各月的降水连续变化分为连升型、连降型、降后升型等四型,并利用回归分析作出各型的预报,在前汛期降水趋势和冬半年(1-3月)气温趋势的预测中收到了较好的效果。4.7主振荡型(POP)分析
主振荡型(POP)是Hasselmamm和Storch在20世纪80年代末提出来的[51]。章基嘉等[52]对离散化场时间序列推导了主振荡型分析方法的两个导出量:主振荡型(POP)及其伴随相关型(ACP)。通过热带太平洋SST矩平场时间序列POP及相应区域850hPa风场ACP的计算例子,给出了它们的实际算法。5聚类分析
郑祖光[53]在首先不能确定用几个因子和分成几类的情况下,提出用变K变N方案。章基嘉等[54]应用K-均值聚类法对东亚各自然天气季节500hPa平均环流进行分型试验。在聚类分析中多数的分类样品是相互独立的,分类时彼此是平等的,但在一些问题中,样品的分类是不能打破顺序的。比如,对某一阶段气象要素数据进行分段以确定不同时段的气候特征。这种分类,称为分割更为形象一些,Fisher提出了最优分割的算法,谢炯光等[55]利用最优分割,对中国T106数值预报输出产品的各种物理意义明确的预报因子进行最优二分割,挑选出晴雨及有无大于25毫米降水的预报因子,建立概率回归方法,做24-144小时的晴雨,大于25毫米降水的完全概率预报,在业务中收到较好效果。最优二分割的进一步优化,产生了一种叫做AID的分割算法(AutomaticInteractionDetection),利用AID方法,不但可以分类,还可以根据新的样品落区在哪一类作出预报。AID具有解决一些非线性问题的能力。谢炯光等[56]据天气学实践选出47个与广东省台风、暴雨关系密切的预报因子,利用AID方法,进行计算做出台风暴雨的短期预报。6谱分析6.1功率谱
李小泉等[57]利用谱分析研究500hPa环流指数的变化,谱分析也常常与其它方法相结合应用于天气分析与预报中,黄嘉佑[58]在研究海温场与太平洋副热带高压之间的关系时使用交叉谱发现,海温不单有明显的两年振动周期,而且这种振动存在于太平洋地区的气压系统中,关系十分密切,它们之间的凝谱平方值高值0.65的临界值。符淙斌[59]利用协谱与正交谱研究纬向和经向垂直环流强度之间的反相耦合振荡关系。
6.2最大熵谱分析
在连续功率谱估计中,自相关函数估计与样本量大小有关,1967年Burg提出了一种称之为“最大熵”谱估计的方法,具有分辨率高、适用于短序列等优点。缪锦海[60]讨论了最大熵谱的优良特性和预报误差过滤下系数阶段的确定。曹鸿兴等[61]讨论了气象历史序列的最大熵谱分析。魏凤英[62]用最大熵谱提取1952-1995年华北地区春季干旱指数序列的显著周期。6.3奇异谱分析(SSA)
奇异谱分析(SingularSpectrumAnalysis)是从时间序列的动力重构出发与经验正交函数(EOF)相结合的一种统计分析技术,特别适合用于大气的非线性振动。吴洪宝[63]、、刘健文等[64]系统介绍了奇异谱的原理及其在气象中的应用。谢炯光等[65]用SSA方法对登陆广东省的热带气旋的演变规律进行了分析,发现年登陆广东的热带气旋存在明显的8年,准3年的周期振荡,登陆珠江口以西的热带气旋,存在12年,准2年的振荡周期。6.4小波分析
小波分析是从傅立叶分析方法发展起来的并被认为是傅立叶分析方法的突破性进展。戴新刚和丑纪范[66]用子波变换研究了长江和黄河流域径流的周期性问题,纪忠萍等[67]用小波分析对广州近百年来气候变化的多时间尺度进行分析,纪忠萍等[68]用小波变换分析广东省低温阴雨的年景趋势变化,着重分析了重低温阴雨年在小波系数图中的分布特征,并根据分析结果对未来1-2年的低温阴雨年景进行了预测估计。7时间序列分析模型
在气象上用得较多的主要有自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)、自回归求和滑动平均(ARIMA)模型。气象要素的时间序列多数是属非线性变化的,上述的时间序列建模模型均为线性模型。而时间序列分析中的门限自回归模型(TAR)是一种非线性模型,它利用逐段线性化手段来处理非线性系统。由于门限的控制作用,保证了递推的稳定性。门限自回归模型可以有效地描述非线性振动现象,可以解释自然界各种类型的稳定循环。丁裕国等[69]利用奇异谱分析对Nino海区SSTA月际序列作短期气候预测试验,采用AR(P)模型,结果发现在SSA分析基础上的AR模型对ENSO海区的SST预报特别有效。史久恩等[70]用自激励门限自回归模型作SOI(南方涛动指数)的预报,其结果与线性AR模型相比较,结果表明非线性门限自回归模型拟合SOI数据,比线性模型更能有效地反映数据的内在规律。8多层递阶方法
1983年中国韩志刚教授[71]提出了建立在现代控制理论中“系统辨识”基础上的含时变参数的新型统计预测方法—多层递阶方法。这种时间序列的新预报方法在气象预报服务中取得了较好的效果[72],不少学者在使用过程中对这种方法的应用方面作了进一步的改进,使其在气象预报应用上得到进一步的提高[73]。9均生函数模型曹鸿兴、魏凤英等提出了时间序列的均值生成函数(MeanGeneratingFunction,MGF,简称均生函数)模型。均生函数预测模型既可以作多步预测,又可以较好地预测极值,为短期气候预测开辟了一条新的途径。魏凤英、曹鸿兴[74]在《长期预测的数学模型及其应用》与《现代气候统计诊断预测技术》两书中对均生函数模型的数学原理及其在气象中的应用作了详细的介绍。10灰色系统预测模型
“灰色系统”理论,是我国学者邓聚龙教授提出的新型理论。到目前为止,人们对天气(气候)系统的演变规律、发生、发展、消亡机制,子系统间的相互作用的了解尚不清楚、不充分,限制了动力和统计方法对天气(气候)系统的深入研究。天气气候系统,由于其复杂性,是一个典型的部分信息已知和部分信息未知的灰色系统。因此,邓聚龙教授提出的灰色系统理论为气象预测和分析研究提供了一个有力的工具。曹鸿兴、翁文洁等人对灰色分析与预测及其在气象中的应用作了推广[75],邓聚龙[76]在“灰色预测与决策”一书中对灰色系统的理论的来龙去脉,具体计算方法作了详细的介绍,并把GM(1,1)模型、灾变预测、季节灾变预测、拓扑预测等方法在气象中的实际应用作了介绍。谢定升等[77]根据GM(1,1)模型的方法原理,作降水峰日的中期预报。11车贝雪夫多项式展开
经典车贝雪夫多项式展开只适用于矩形网格,周家斌将车贝雪夫展开推广到不规则格点上,并将其用于气象要素的分布预报[78]。周家斌提出了一种用车贝雪夫多项式做时间序列预报的迭代算法,这是一个非线性、非参数方法,无需对序列作平稳或其它假定。它的拟合和实际预报效果较好[79]。12神经网络原理在气象中的应用
近年来神经网络在气象中的应用快速发展。周曾奎等[80]利用神经BP网络模型输出判断台风移向趋势-西进、北上、西北移。于波等[81]结合模糊判断技术利用多层神经网络对GMS云图的台风云系进行图像识别。谢炯光等[82]利用神经BP网络进行月雨量集成预报试验,金龙等[83]提出了小波变换与神经网络相结合的多步预测模型。
13非线性动力学
林振山[84]首先提出了诺干相空间预报模型,并提出将相空间模处理组合法用于业务预报中。周家斌[85]提出了相空间向量相似方法,相轨迹变率方法,空间变换方法和相空间模方法等4种以混沌理论为基础的预报方法,这些方法已经用于南方涛动强度、北京降水和华北降水分布的预报。14分形
近年分形的思路和方法正逐步在气象分析和业务中得到应用。刘式达等[86]指出分数维是气候系统结构的特征,是气候系统中尺度变换后的不变数。付昱华[87]应用分形分布模型N=C/rD的推广形式,即连续变维分形(分维数D是r的连续函数,而不是常量)预测台风路径。
三、结束语
近20年来统计气象学在中国取得了长足的发展,统计预报在中国气象业务预报和科研中占有重要的位置。主要表现在:1在数值预报产品统计释用中,统计预报方法发挥了积极的作用。2随着计算技术和计算机的发展,以场分析和场相关的统计预报方法如SVD、EEOF、CCA分析等方法得以在业务上得到了广泛应用,对提高业务预报精确率帮助很大。3一些新的统计方法由于种种原因,用在气候分析中较多,用在业务预测上较少,有待今后进一步开发。
4近年来国内外一些数学界的研究新成果,如自记忆方程、主振荡模、混沌分形、小波分析等引入到气象界的速度很快,如何使其在天气预测中更快、更好地发挥作用值得研究。
5在统计预报的使用中,如何发挥统计预报的长处,避免其不足的地方,要继续研究
扩展阅读:统计方法总结
一、统计分析方法总结
1.连续性资料
1.1两组独立样本比较
1.1.1资料符合正态分布,且两组方差齐性,直接采用t检验。1.1.2资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。1.1.3资料方差不齐,(1)采用Satterthwate的t’检验;(2)采用非参数检验,如Wilcoxon检验。
1.2两组配对样本的比较
1.2.1两组差值服从正态分布,采用配对t检验。
1.2.2两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。1.3多组完全随机样本比较
1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。
1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。1.4多组随机区组样本比较
1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。
1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。
****需要注意的问题:
(1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。
(2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确**
(3)关于常用的设计方法:多组资料尽管最终分析都是采用方差分析,但不同设计会有差别。常用的设计如完全随即设计,随机区组设计,析因设计,裂区设计,嵌套设计等。2.分类资料2.1四格表资料
2.1.1例数大于40,且所有理论数大于5,则用普通的Pearson检验。
2.1.2例数大于40,所有理论数大于1,且至少一个理论数小于5,则用校正的检验或Fisher’s确切概率法检验。
2.1.3例数小于40,或有理论数小于2,则用Fisher’s确切概率法检验。
2.22×C表或R×2表资料的统计分析
2.2.1列变量&行变量均为无序分类变量,则(1)例数大于40,且理论数小于5的格子数目格子数目>总格子数目的25%,则用Fisher’s确切概率法检验。
2.2.2列变量为效应指标,且为有序多分类变量,行变量为分组变量,用普通的Pearson检验只说明组间构成比不同,如要说明疗效,则可用行平均分差检验或成组的Wilcoxon秩和检验。
2.2.3列变量为效应指标,且为二分类变量,行变量为有序多分类变量,则可采用普通的Pearson检验比较各组之间有无差别,如果总的来说有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。
2.3R×C表资料的统计分析
2.2.1列变量&行变量均为无序分类变量,则(1)例数大于40,且理论数小于5的格子数目总格子数目的25%,则用Fisher’s确切概率法检验。(3)如果要作相关性分析,可采用Pearson相关系数。
2.2.2列变量为效应指标,且为有序多分类变量,行变量为分组变量,用普通的Pearson检验只说明组间构成比不同,如要说明疗效或强弱程度的不同,则可用行平均分差检验或成组的Wilcoxon秩和检验或Ridit分析。
2.2.3列变量为效应指标,且为无序多分类变量,行变量为有序多分类变量,则可采用普通的Pearson检验比较各组之间有无差别,如果有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。
2.2.4列变量&行变量均为有序多分类变量,(1)如要做组间差别分析,则可用行平均分差检验或成组的Wilcoxon秩和检验或Ridit分析。如果总的来说有差别,还可进一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。(2)如果要做两变量之间的相关性,可采用Spearson相关分析。2.4配对分类资料的统计分析2.4.1四格表配对资料,(1)b+c>40,则用McNemar配对检验。(2)b+c照的注意问题附后);③随访的起点和止点应有明确的定义;④注意影响实验研究结果的因素,并适当控制(具体内容附后)。
1.国内外研究现状、水平、发展趋势(简要介绍与本课题有关研究的国内外现状、水平、发展趋势等,写明本课题提出的依据及本课题研究目的;简要介绍预试验内容及结果。)。2.研究对象:
(1)具体诊断标准(用公认的或统一的,并阐明出处;如没有统一的标准也应写明是自定标准。)、制定入选(纳入)标准及排除标准;(2)研究对象选择范围(包括对照组)及选样和分组方法(使用正确的随机方法选样和分组;在实验对象的分组和施加因素分配实验组、对照组上,都要随机化);(3)样本含量。(说明确定样本含量的依据)3.处理因素:(详细写)
处理因素设置要求:①抓住主要因素;②找出非处理因素(混杂因素);③处理因素标准化。(1)设备(或试剂或药物)生产厂家(来源)及型号(剂量);(2)治疗方法及操作程序(包括对照组);
(3)操作过程中的质量控制(包括方法、人员、设备三统一及实验质控手段等);(4)技术关键。
4.研究结果:
确定研究效应的测量指标及测定方法,要考虑与待评价的结果有关联性、客观性、灵敏性、特异性及实用性等。
(1)疗效判断标准(用公认的或统一的,并阐明出处;如没有统一的标准也应写明是自定标准。);
(2)(近期、远期)观察指标(各组观察指标应一致)及观察方法;(3)科研记录表格及汇总表格式样;(4)统计方法及指标确定,预计结果;
(5)科研质量控制措施(包括科研全过程的各环节,如预试验工作、分组、施加处理因素、临床观察及随访、原始资料的记录及收集、资料整理等方面质量控制措施)。5.创新设想(本研究的):
6.工作时间安排(包括调研、设计、研究、统计分析、总结鉴定等):
7.研究人员分工(包括姓名、性别、年龄、职称、工作单位及在本研究中的详细分工):8.经费的筹措及使用计划:
9.存在(可能出现)的问题、困难及解决办法:
临床科研的对照问题
为保证临床科研实验组与对照组之间具有可比性,对照组中的观察对象除了实验因素不同以外,实验过程中的实验条件和辅助措施,都应与实验组相同。常用对照方式如下:
1、空白对照:对照组不施加任何处理因素。这种对照仅用在某些病情较轻或长期稳定无任何危险的疾病,如:慢性关节炎、HbsAg携带者、近视等。
2、安慰剂对照:对照组采用无药理作用且无害的“药“,如:淀粉、生理盐水等经加工后其外形、味道等与试验药相似,不被受试者识别。这种对照仅用在研究的疾病尚无有效治疗方法,或使用安慰剂后该病的病情、临床经过、预后等影响小或无影响时。
3、实验对照:对照组不施加处理因素,但施加某种与处理因素有关的实验因素。4、标准对照:用现有标准方法或常规方法做对照,注意以一种低疗效的方法作对照来提高试验的疗效是毫无意义的,甚至是有害的。5、历史对照:以过去的研究结果作对照,这是一种非随机和非同期的对照,容易产生偏倚(可能因为疾病自然病程会随时间而变化,或医生的收治病人诊断标准和治疗方法或水平因时间而变化等,使两组失去可比性)。这种对照可用于狂犬病、骨折愈合等疗效对照。
6、自身对照:对照和实验在同一受试对象进行,这种对照简单易行,但应注意该方法的两个缺陷:一是实验总是把处理前作对照,这不符合随机分配原则;二是实验前后某些环境因素或自身因素发生了改变,可能影响实验结果。可考虑用交叉实验解决。
7、相互对照:多种待研究观察因素相互对照。
目前常用的设计方案有:随机对照实验、配对实验、交叉实验(适于病程较长的实验研究),可根据具体情况,选用适合的方法进行实验研究。10、影响实验研究结果的因素及其控制一、误差:
1、随机误差:通过增加样本含量,可减小随机误差,但不能消除。2、非随机误差:
非系统误差:偶然失误造成的。
系统误差:误差值遵循一定的规律而存在或变化,增加样本量,不能纠正。
二、编倚:(可以看成是一种系统误差)
1、选择性偏倚:防止选择性偏倚的措施:①正确拟定观察对象的纳入和排除标准;②采用分层抽样方法;③正确设立对照;④遵守随机化原则。2、测量偏倚(或称观察偏倚或信息偏倚):产生原因:①沾染(对照组也接受了处理措施);②干扰;③依从与非依从;④失访(>20%);⑤检查与诊断结果不一致;⑥观察记录有误;⑦心理因素的干扰。
防止措施:①用盲法试验;②签定实验合同;③检查实验对象的依从情况;④注意医德问题;⑤定期检查研究记录;⑥对实验方法、诊断标准的一致性在实验前应做出估计。3、混杂偏倚:
产生原因:多在总结分析阶段,评价被研究因素与疾病之间的关系时,如果存在外来因素与该病和研究因素均有联系,使研究因素效应与外来因素效应混
在一起,从而掩盖或夸大研究因素与疾病的真实联系。
防止措施:①设计时,用配对设计或采用分层抽样方法;②分析阶段,用分层分析技术或多变量回归分析技术。其目的是平衡混杂因素的作用。
医学科研设计基本内容(调查设计参考用)
1、国内外研究现状、水平、发展趋势(简要介绍与本课题有关研究的国内外现状、水平、发展趋势等,写明本课题提出的依据及研究目的。注意:研究目的应很明确,且围绕一个中心;简要介绍预试验内容及结果。)。2、调查计划:
⑴、确定观察对象(所要研究的总体)和观察单位(总体中的个体统计对象)
⑵、选定调查指标(调查指标是调查目的的具体体现):指标选择要求:①精选、重点突出,不要贪多求全,分散精力。②计量指标比计数指标敏感。③客观指标优于主观指标。④选用灵敏度高,特异度高的检查方法作为诊断依据。⑶、调查方法(普查、抽样调查等)
⑷、样本含量(说明确定样本含量的依据)
⑸、收集原始资料的调查方式(直接观察、直接采访(访问调查、自填调查)、间接采访(信访、电话))
⑹、设计调查表和问卷(调查表和问卷设计相关问题附后)⑺、调查阶段的组织工作(包括组织领导、关系协调、调查员培训等)
⑻、设计阶段质量控制:①正确划分调查范围;②尽量选择客观、明确的指标;③对调查问题进行精选,避免问题过于繁杂;④对于可能引起混淆的调查项目给出明确的定义。
⑼、调查阶段质量控制:①通过预试验工作完善调查设计;②抓好调查员的选拔和培训,避免因调查员工作态度不好或业务水平不足而影响调查结果;③对被调查者可能存在的拒绝、躲避、隐瞒、等问题,采取相应措施,如:开展宣传、摸清被调查者在家的时间规律、对敏感问题做好解释和保密工作,对记忆不清者,可请知情人帮助回忆;④在问卷中设置相反问题,以了解应答的可靠性;⑤选择调查方式时应考虑年龄和文化水平因素;⑥对检测项目的调查应注明检测设备、
试剂等生产厂家、型号、批号;操作过程应注意操作方法(包括诊断标准)、人员、设备(应有明确的校正灵敏度及准确度的方法及时间)三统一;⑦注意调查的效度(真实性)与信度(可靠性)问题,常采用现场抽样复查来评价调查信度等。3、整理计划:(去粗取精,去伪存真)
⑴、计算机录入与整理工作:应提出确保录入质量的措施:①在建立数据库时,编写逻辑查错程序;②同一资料用两个录入员输入并用计算机核对;③资料录入完成后,做频数表或散点图,发现异常值;④正确选择合适的指标和分析方法等。⑵、资料分组:(按数值大小分组、按类型分组等)⑶、分组组数确定:
4、统计分析计划:(包括:①说明指标的内涵和计算方法及预期进行统计描述和推断内容;②拟进行的探索性分析;③控制混杂因素的措施;④列出统计分析表,并通过统计分析表检查调查、整理计划有否遗漏。)5、创新设想(本研究的):
6、工作时间安排(包括调研、设计、研究、统计分析、总结鉴定等):
7、研究人员分工(包括姓名、性别、年龄、职称、单位及在本研究中的详细分工):8、经费的筹措及使用计划:
9、存在(可能出现)的问题、困难及解决办法:
10、调查表及问卷设计相关问题一、一般结构:
1、前言:用于说明调查目的、重要性、回答问题的必要性以及对调查内容保密等,以取得调查对象的合作。
2、填写说明:为保证所有调查员和调查对象均能对调查项目和填写方法正确理解,统一认识而编写。
3、核(备)查项目:该部分与调查目的无关,作核查核对用。内容包括调查员姓名、调查日期、复核结果、未调查原因等。
4、调查(分析)项目:为直接用于调查指标所必须以及排除混杂因素所必须的项目,包括调查对象的①背景资料,如:姓名、住址、单位、电话等;②人口学项目,如:年龄、性别、民族、婚姻状况、文化程度、职业等;③研究项目(该部分是调查表的核心内容,依不同调查目的而定,分问题项目和检测项目)。二、问题的形式:问题的基本形式有提问式和陈述式两种;根据问题答案的形式分开放式问题(无统一答案)和封闭式问题(有固定答案)。封闭式问题设计注意:1、答案应包括所有可能的答案,还应有“其它”一栏;2、各选择答案不应相互包含,不应有重叠情况。三、问题设计的一般原则:1、尽量避免用专业术语(提问一般就低不就高);
2、避免混淆,对语义较模糊的词(如:经常、偶尔、普通、大概等)应给出本次调查的定义或标准。
3、避免双重问题,避免一个问题中实际提出两个问题。4、提问避免诱导或强制性(否定形式的提问有诱导之嫌);对有社会期望偏倚的问题应注意。5、问题应适合全部调查对象并符合逻辑。
6、敏感问题的处理:对国家政策、伦理道德、经济收入、生活行为、其它个人隐私等敏感问题,可以采用对象转移法或假定法提问;关于敏感问题调查的随机应答技术问题,须参考有关统计学专著。
7、调查项目的安排顺序(注意问题顺序的逻辑性)①、一般问题在前,特殊问题在后;②、易答问题在前,难答问题在后;
③、敏感问题一般在最后;如敏感问题较多,可分散在问卷中,以降低其敏感性;④、一般将问题项目放在前,检测项目放在后。
友情提示:本文中关于《气象中的统计方法总结》给出的范例仅供您参考拓展思维使用,气象中的统计方法总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《气象中的统计方法总结》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/525882.html
- 上一篇:201*年气象台年终业务工作总结