铁路司机技师论文素材
电力机车空气管路系统防寒技术
发表日期:201*年1月30日【编辑录入:办公室】
防寒技术是确保机车低温工作性能的关键。过去我国电力机车主要在华北及其以南地区运用,最低使用温度一般不到一25℃,随着国产电力机车进入东北地区和乌兹别克斯坦、哈萨克斯坦等国外市场,这些地区冬季严寒的气候给电力机车正常运用带来了巨大挑战。以哈尔滨地区为例,一月份平均气温为一19.6oC,极端最低气温可达一42.6oC。这些用户都明确要求机车应能满足一4o℃(哈萨克斯坦招标机车要求为一5O℃)低温下正常运行,而低温下电力机车空气管路系统因防寒措施不当易出现零部件性能下降、管路及阀件冻结等问题,将严重影响机车的正常运用。
1空气管路系统防寒历程
最初国产电力机车的防寒是在既有机车的基础上进行防寒处理和改进,以满足低温运行要求,其型号主要有SS4改、SS9和SS9改。由于当时缺乏防寒经验,我们主要针对机车低温下出现的问题,逐步摸索空气管路系统防寒经验,最终使机车满足一40℃低温下正常工作要求。第一阶段的防寒从首批赴东北地区运用的SS4改型机车设计制造阶段开始实施。我们从确保部件的低温性能人手,要求全部装车产品满足一4o℃低温要求,关注的重点是压缩机、干燥器及各阀的密封橡胶件等几项关键部件。此外我们还参照西北地区电力机车的防寒经验,对空气管路系统中影响行车安全的分配阀、中继阀、管道滤尘器等几个重要阀件加包电热套,并借鉴高寒地区内燃机车用布包裹管道防寒的经验,对安装于机车底架上的钢管加包防寒保温材料。该批机车投入东北地区运用后在201*年冬季,空气管路系统出现了一些问题,经统计主要有以下几类:压缩机无法向总风缸充风;升弓管路系统工作不正常,导致机车升弓、合主断困难;干燥器工作异常,如无法正常排污或内部气流通道堵塞;少量制动机阀件冻结卡滞等。针对以上问题,我们实施了第二阶段的防寒,在原来基础上扩大电热套的应用范围,对空气管路系统几乎所有气动阀件加包电热套。考虑到蓄电池的容量,这些电热套分为两类:第一类主要对确保受电弓、主断正常工作的升弓管路系统各阀件进行加热,由机车蓄电池提供DC110V电源;其余电热套列为第二类,主要对风源系统和制动机系统各阀件进行电加热,由机车控制电路供电。实施以上防寒措施后,SS4改型机车低温工作性能明显提高,但SS9和SS9改型机车因其特殊的管路布置,仍存在低温下压缩机无法向总风缸充风的问题。针对该情况我们在201*年冬季对这两型机车实施了第三阶段防寒,即在两压缩机出风管汇合处的三通阀及附近钢管(均属机车底架管路)、干燥器排污管共两处地方缠绕自控温电伴热线,外包防寒保温材料;并在螺杆压缩机与干燥器进风管之间增设一条备用管路;同时还将双塔干燥器转换周期缩短,以提高干燥效果;除此之外,还从SS90074机车开始,将螺杆压缩机与活塞压缩机位置对调,以缩短螺杆压缩机至干燥器的管路长度。通过以上三个阶段的防寒,电力机车因低温而出现的故障大幅减少,基本上能满足在冬季严寒气候条件下正常运用。但以上防寒措施中也存在一些问题与不足,主要有以下几点:(1)加热保温针对性不强。由于过去我们对管路系统易冻部位调查分析不够,从确保安全角度出发,采取了对几乎所有气动阀件加包电热套,对大部分管路包加防寒材料的措施。实际上这是一种治标措施,效果并不理想。因为该措施不能清除管路系统冻结的真正元凶冷凝水,反而使机车制造和运行成本增加,电气线路的故障隐患点增多,而且阀件包加电热套后还增加了检修维护的难度。(2)电热套缺乏自动调温能力。环境温度稍高时,部分阀件可能因加热温度过高而加速内部橡胶件老化;当环境温度降低时,另一部分阀件又可能因加热功率不足而起不到防冻的效果。
2空气管路系统防寒技术分析2.1防寒设计原则
空气管路系统防寒设计原则是在满足机车低温下正常运用的基础上,还具备安全可靠、经济实用、操作维护方便等优点。也就是说,一方面要确保防寒效果显著,~方面又要使防寒措施简单实用,具有可靠性、针对性和一定的免维护性。既防止因扩大围加热保温而造成资源浪费,又避免因防寒措施不当而导致机车故障。
2.2低温对机车空气管路系统的影响我国东北地区以及哈萨克斯坦、乌兹别克斯坦等地的最冷时期出现在每年l2月至次年1月,此时日最低气温一般为一5一一35℃,相对湿度60%一80%。这种严寒的气候对机车空气管路系统的影响主要有两方面。一方面是低温下各零部件自身性能下降或丧失,如润滑油脂粘度增大甚至固化、橡胶件变脆且易老化龟裂、钢材韧性下降而脆性增大、电子元器件工作异常等。针对这类问题,关键在于对机车外购零部件及原材料进行把关,确保选用的产品在一40℃甚至更低温度下能正常工作。另一方面是压缩空气中的冷凝水在管道内结冰,造成管路系统冻结。这是因为空气压缩后,单位体内的水蒸气分压力增大,露点升高,当其随环境温度降至0oC以下,就有可能析出冷凝水并结冰图1表示的是压缩空气饱和含湿量与绝对压力和温度的关系。
从图中可以看出,低温状态下空气饱和含湿量一般较低(0.750.9MPa压缩空气在0℃以下的饱和含湿量小于lg/kg),随着温度升高,该值呈近似指数级增长;在温度不高(40℃以下)时,饱和含湿量与压力呈近似反比关系。例如在环境温度一20℃,相对湿度60%时,大气含湿量约为0.5g/kg,对应露点一25℃;当压缩至900kPa后,压缩空气的露点将升高至4℃左右,降至环温后每含有1kg干空气的湿空气中将有约0.45g水析出并结冰。2.3干燥指标的选定
防治管路系统冻结的关键在于对压缩空气进行干燥处理,除去其中水份,使其压力露点低于环境温度。为确保空气管路系统低温下正常工作,我们应正确选定干燥器的干燥指标。根据世界各国经验,为防止管路系统出现锈蚀现象,空气管路系统使用的压缩空气相对湿度应低于35%,当然这是指压缩空气在压力状态和环境温度下的相对湿度值。实际上由于在干燥器出风口处的压缩空气温度有可能高于环温15℃(螺杆压缩机供风)甚至更多(活塞压缩机供风),在其降温过程中,相对湿度必然上升,所以干燥器出风口处干燥指标应低于35%方能满足要求。究竟低多少合适呢?我们可假定机车由螺杆压缩机供风,此时干燥器出风口处的压缩空气与环境的温差为15℃(忽略总风冷却管、干燥简的散热以及吸附过程中的发热)。从图1可看出,该温差将导致空气饱和含湿量下降为原来的1/4~1/2,即压缩空气充分冷却后相对湿度将为高温状态下的2~4倍。所以为确保压缩空气相对湿度始终低于35%,干燥器出风口处干燥指标宜选定为不大于8%。此外,双塔干燥器的干燥效果与转换周期有一定关系,一般而言缩短转换周期可提高干燥效果,但会因为转换阀件的工作频率增高而缩短使用寿命。由于高温和低温环境下干燥剂的吸附效果都会明显下降,所以此时应适当缩短干燥器转换周期,并增大再生孑L径,以确保干燥效果。2.4防治管路系统冻结的重点部位
根据对机车低温下故障情况的统计,我们将下面三个部位作为重点来做好管路系统冻结的防治工作。2.4.1干燥器干燥器低温下易出现内部气流通道堵塞或无法正常排污等故障。这是因为干燥器内部一些管路、阀件处在高湿度甚至有冷凝水析出的情况下工作,水份残留在内壁,日积月累可能导致排污管和滤清简冰冻堵塞,排污阀和进气阀等部件动作卡位。针对这类问题,我们可在安装设计中尽量避免排污管大角度折弯,并在该管外包自控温电伴热线和防寒管材;同时对排污阀和进气阀等部位采用加热板或电热套进行加热保温。过去为确保干燥器故障后能维持机车运行,通常设有干燥器短接塞门,以将其隔离而直接导通压缩机与总风缸。该做法对防寒工作十分不利,因为导通短接塞门将导致大量未经处理的饱和高湿度压缩空气直接进入后续管路,低温下极易引发冻结故障,在实际运用中应尽量避免。若干燥器的可靠性很高,则可考虑在设计中取消短接塞门。2.4.2总风冷却管路
压缩机至干燥器之间的总风冷却管路冻结堵塞问题曾经在电力机车上多次出现。其主要原因是该段管路位于干燥器之前,内部的压缩空气未经干燥处理,富含水份,低温下易导致该段管路上的止回阀冻结卡位或钢管内部完全冰封堵死。止回阀是通过阀芯在阀体内上下移动实现气体单向流动的,阀芯表面附着的冷凝水结冰后,容易使阀芯冻结在阀体上不能动作,导致压缩空气流动受阻。要解决该问题可考虑在止回阀外部加装效果良好的加热装置,使其温度升至冰点以上。如果压缩机自带止回阀(目前装车的螺杆压缩机都属该情况),则总风冷却管上的止回阀多余,可予以取消总风冷却管内部完全冰封堵死的情况主要出现在SS9型机车上,且一般位于距干燥器较近的底架管路低凹处以及穿越车底地板处。这是因为SS9型机车压缩机与干燥器总体布置距离较远,总风冷却管较长,且多布置于车底,使得高温压缩空气与外界的热交换比较充分,冷凝水有足够时间冷却并结冰。相比之下SS4改型机车因为压缩机与干燥器的距离较近,总风冷却管较短,而极少出现这种情况。这说明要避免总风冷却管冻结堵塞,应尽量将干燥器与压缩机布置在一块,以缩短该段管路长度,若条件允许还可在该段钢管外缠绕自控温电伴热线,外包防寒保温材料。2.4.3升弓管路系统
以前电力机车升弓管路系统出现冻结故障的情况比较严重,这是因为机车库停后重新升弓合主断时,有时需要辅助压缩机提供压缩空气,而辅助压缩机提供的压缩空气一般未进行有效的干燥处理,其中肯定会有凝结水随温度下降而析出,并容易在随后管路中的止回阀、调压阀等处集结成冰使其动作失灵,导致机车故障。针对这类问题首先可考虑减少易故障部件,如:受电弓一般自带调压阀,设置在管路中的受电弓调压阀可考虑取消;其次,可在辅助压缩机出口设置冷却风缸,以尽快降低压缩空气温度,并通过分水滤气器或小型干燥器及时处理掉已析出的冷凝水,防止其进入后部件;再次,可对易故障阀件采取有效的加热措施,防止其冻结;最后,在严寒气候下还应尽量少用辅助压缩机打风,以避免产生水汽而影响后续管路系统。3结论
电力机车空气管路系统的防寒工作经过几年的摸索,目前已积累了一定的设计经验。为确保机车能够在高寒地区更好的运用,建议从优化机车整体布置、提高干燥器干燥效果与可靠性、增加升弓管路除水措施等方面考虑机车防寒,并通过进行相关低温试验验证,进一步提高空气管路系统在低温下工可靠性。
扩展阅读:技师论文材料
红外线传感器利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。
红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。
红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。
■传感器论文■红外线传感器的应用
人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线
最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:
一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。
1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。
3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
红外线遥控鼠标器中的传感器
在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向
照相机中的红外线传感器——夜视功能
红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,伊拉克首都大部分地区都处于停电状态,这时除了防空曳光弹和导弹爆炸引起的火光以外就只有月光或星光照明了,能见度极差。我们在电视新闻上看到的从现场传回来的录像片的画面都呈现绿色,说明电视记者在拍摄时使用了红外线夜视仪,导致影像是绿色的,如果不使用红外摄像技术,那么我们从电视画面上将只能听到声音,而看不到任何影响了。
需要注意的:因为红外线夜视摄影仪的前提是数码摄像机能发出人们肉眼看不到的红外光线去照亮被拍摄的物体,所以说它的拍摄距离是有一定限制的,如果摄
像机发出的红外线到达不了要拍摄的物体,那么当然就什么也拍不到了C-211D微型黑白红外线摄像机
红外线传感器在工程上的应用———红外线轴套扫描器
ROTA-SONDETS201*通过光机系统扫描视场,并且无需任何光学调整。它精确测量线材、棒材等生产线的活套大小,甚至对特殊钢或有色金属以及在水汽、烟雾严重的情况下也能可靠工作。DELTA的红外传感器TS201*可用于活套控制、热带材或热板材的对中控制以及在其它很广的应用中提供位置信息。ISO9002
红外检测高灵敏度250℃或400℃使用维护简单、方便具有自监测和报警功能ROTA-SONDETS201*特点
TS201*检测位于其视场范围内的热工件(钢,铜,合金及玻璃等)的位置并输出与工件在视场中的角度位置成正比的信号。
ROTA-SOROTA-SONDENDETS201*是扫描方式工作的测量用传感器,它对温度高于250°C(480°F)的热工件的红外辐射敏感。
主要特点:
高灵敏度:400°C/750°F或250°C/480°F红外光谱:1至3m由自监测功能实现数字式控制无需光学调整使用维护方便
专为钢铁工业恶劣的工作环境设计,光电子电路放置于重型外壳中(IP66)设有空气吹扫装置和水冷却系统
提供连接器和带有不锈钢辫型编织保护层的电缆
ROTA-SONDETS201*应用典型应用
热钢板的对中控制和纠偏控制
红外线边缘传感器FR50
边缘纠偏传感器FR50是以反射原理工作的。发射机产生一束波长为880nm的平行红外线,这束红外线被对面整齐排列的CCD元件所接收。一个处理器评估这些信号并发送出估计好的实际位置到CAN总线。传感器在+/-10mm的测量范围内以0.02毫米的精确度确定出纸边位置。光学设备只是接收平行光束从而排除了位置偏差导致的高度起伏。
一个位向控制器监控镜头扫描污渍并反馈适当的污渍信息到控制器。
传感器应用与军事上——军用遥感技术
遥感从字面上说就是从远处感觉事物。严格一点的意义上定义为:远远地去感觉某一定对象的技术。广义地讲,遥感是不直接接触地收集关于某一定对象的某种或某些特定的信息,从而了解这个对象的性质。很早以前,人们就希望从空中来观察地球,当时人们使用的是普通的照相机,后来发展成为专门的航空照相机。航空摄影的技术在世界大战期间获得了长足的发展,基于这种照片的识别技术也得到了提高。随着飞行器技术的提高,尤其是火箭和卫星的出现,遥感技术获得了一个全新的平台。现在,遥感技术也日新月异,成为在国民经济建设中不可取少的一种重要技术,尤其在军事方面的应用也很广泛。遥感中收集到的信息,就是物体发射或者被它反射的电磁波。这些电磁波包括近紫外、红外线、可见光、微波等。收集电磁波信息的装置叫做传感器。装载传感器的地方,称为平台。遥感就是用装在平台上的传感器来收集(测定)由对象辐射或(和)反射来的电磁波,再通过对这些数据进行分析和处理,获得对象信息的技术。遥感技术的迅速发展,一个重要的因素是它应用于我们所生活的环境。人们越来越需要深刻地了解我们的地球,了解它的资源,了解他的变化,以便合理安排生产和生活活动。遥感主要原理
注:传感器装载在平台上
遥感中可以使用可见光和近红外区的电磁波进行遥感,这是利用了对象的反射特性,这种方式是航空摄影发展而来的结果,也是最为广泛应用的一种,在月球上观察地球就是这样的。另外有两类技术也在遥感中大显身手。其一是使用热红外和热成像技术,主要是利用了物体的辐射特性。热成像是与远距离测量地球表面特征的温度有关的遥感分支。它所研究的问题小到可以探测一间屋子的热能量泄漏,大到可以研究地球表面的洋流。因为温度实质是地球环境中一切物理、化学和生物过程的重要控制因素之一。因此,温度数据在经营管理地球资源的活动中必然占有极其重要的地位。其二是利用微波遥感器进行遥感。微波遥感分为被动式和主动式。主动式的微波遥感器主要是侧视雷达。它是在50年代为军事侦察目的而发展的。它目前的重要应用主要在于快速取得大片有云地区的地面资源情报数据。被动式微波遥感器感受的是它们视场内的自然可利用的微波能量,其工作方式和热辐射计或热扫描仪非常相似,但是能够接受到的信号也比热红外区微弱得多,同时信号所伴随的噪声也大得多。因此这种信号的判释问题也要比其他各种遥感器困难得多。但和侧视雷达一样也有全天候的特性。依靠选择适合的工作波长,可以用它或者穿透大气,或者观察大气。通常来说,微波遥感用在大气的各项数据的测量上,在海洋学、油污探测、融雪测定等方面都有应用。
遥感在军事科学上的应用是显然的,因为可以远距离地观察目标,而且可以获得相对宏观的分析数据。在军事上,遥感的用途大致有:首先是对目标国家和地区的资源状况的监视。通过有效地监视资源及其变化,可以帮助确定战略的目标。其次,监视对方军事部署和大规模的军事移动。许多军事部署的位置信息可以通过高精度的卫星遥感获得,大规模的军事移动也容易在遥感器上留下痕迹,这些都对于对应国家采取相应的措施提供了快速而有效的信息。其次,在具体的作战当中,遥感可以帮助分析局部的地形、资源状况,从而帮助己方进行战术行动的方案判断。各种军用卫星的发射,也为全方位地监视目标提供了基础。现代战争作为数字化的战争,信息在战争中是至关重要的,遥感作为一项能够大范围、高精度、快速获得信息的技术,必然能够在未来的战争中获得更多的应用。
可见,传感器在科学技术领域、工农业生产以及日常生活中发挥着越来越重要的作用。人类社会对传感器提出的越来越高的要求是传感器技术发展的强大动力。而现代科学技术突飞猛进则提供了坚强的后盾。二十一世纪,人们一方面通过提高与改善传感器的技术性能;一方面通过寻找新原理、新材料、新工艺及新功能来改善传感器性能,制造出更多的传感器.而红外线传感器作为其中的一部分也必将得到更大的发展.
红外线温度传感器的设计与实现
陈远金,程永进,吴雄伟
摘要:本文介绍一种新型的红外线温度传感器其基本工作机理是利用高精度红外位移传感器测量热膨胀系数较大的有机玻璃长度。用灵敏度为0.001℃的高精度石英温度计对其校准,证实这种仪器的温度测量精度可达10℃数量级,比较市场上现有的温度传感器,其灵敏度和线性度都有较大优势,具有广泛的应用前景。
关键词:红外线;温度;传感器;分辨率中图分类号:TP212.11文献标识码:B
在物理实验和生产中,往往需要高精度的测量,环境温度对测量的影响是一个重要因素,因此,必须对环境温度进行精密测量。对测量仪器则要求制造成本低、测量精度高、线性度好、应用范围广、便于安装和调试。目前市场上可以用于测量温度的传感器有石英温度计、光纤传感温度计、热敏电阻温度计等。其中石英温度计灵敏度最高,可达到1×10℃数量级。然而这些传感器的价格一般都比较贵,线性度难以达到精密测量的要求。
本文介绍一种红外线式高精度温度测量仪器。其具有单色性好、抗干扰性能强等特点,比较适合高精度测量。此种仪器结构简单、容易制作、便于安装,所测温度可直接输出到微机进行后期数据处理,十分方便易行。
一、仪器原理和用途
本仪器采用北京东林松工贸有限公司生产的微晶玻璃陶瓷材料,其具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能。基本性能指标如下:使用温度-273~1000℃;体积电阻率1.08×1014Ωcm;热膨胀系数为α1=8.6×10/℃。该材料抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度
-6-4-无变化。
用该陶瓷材料制成一个圆筒,筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,另一端固定一个红外位移传感器,让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为。α2=1.7×10℃,两者相差达两个数量级,所以当温度变化时,可以认为有机玻璃在陶瓷材料上的相对位移可以忽略,故其自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积,从而使位移传感器输出电压随之改变。这种新型温度传感器的测量灵敏度为
-4其中△L为红外位移传感器对有机玻璃长度测量的灵敏度。
红外位移传感器主要由红外发光二极管发射和接受装置、数据放大去噪部分以及数据采集处理系统组成。
它是利用红外光电二极管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体,将微小的温度变化转换成电压变化,通过放大电路进行放大处理,结合数据采集卡建立电压信号与温度的函数关系,然后利用高精度螺旋测微器定标,最终形成可以得到一个较高测量精度(3×10m)的位移测量仪。由于光电转换的电流较小,而且红外发光二极管的功率也较低,因此可以认为红外位移传感器不会对测量的温度环境有影响。
整个实验装置的结构如图1。
-7二、仪器的制作与实验结果
将设计好的温度传感器与灵敏度为0.001℃的石英温度计放入一个铜制的匣子里,并且尽可能使两者接近,以减少环境温度差别。同时放置一个用黑盒子包裹的功率为1W的灯泡给匣子加热,采用黑盒子是为了减少匣子内背景光对红外位移传感器的影响。实验中利用PCL-711B数据采集卡采集数据,该采集卡具有高性能、高速度、多功能等特点,适用于现行的IBMPC或其它兼容计算机。高性能、丰富的软件支持以及多种功用,使得PCL-711B成为工业应用和实验设备的理想选择。利用其A/D转换功能并结合串口通信将数据输入到PC机进行后期处理。
实验时,将灯泡打开约25min后,可达到60℃。由于升温过程较快,所以选用降温过程测量。约30min后温度达到50℃,2h后达到室温(28℃),由于温度变化所对应的电压变化比较剧烈,测量选用的温度变化控制在40~39.905℃。每当石英温度计的读数改变0.005℃时,便读取相应的电压数据。最终得到的电压数据以及石英温度计的测量温度见表1。表1
对表1中数据进行线性拟合,其曲线和拟合议程结果见图2。
线性拟合方程式为T=39.949+(-0.00926)VR=-0.99863
从图中可以看到尽管在有些地方出现了小的波动,其线性度还是比较好的。
其中传感器的灵敏度为/mV,和其它温度传感器比较
可以看到,其灵敏度较石英温度计下降一个数量级,且线性度比较好。从结构来看,设备相对简单、成本低、适用范围广泛,而且特别适用于需要精密测量温度的环境。三、总结
从整个传感器的设计和实现过程中,发现由于选用材料的复杂性和性能指数的稳定性,对实验的结果有一定影响。今后将考虑选用线性度好和膨胀系数高的新型材料,有理由相信这种新型的红外温度传感器的精度将会有进一步提高。
当然,由于位移传感器分辨率的限制,这种新型的温度传感器在温度变化较大的环境中使用尚有不足,但就常用工作和实验环境而言,它完全可以取代传统的温度计,具有较好的应用前景。参考文献:
[1]程永进,陈远金,吴雄伟.数字式红外线高精度位移测量仪[J].物理实验(24卷),201*.[2]常健生.检测与转换技术[M].吉林工业大学出版社,1987.[3]蔡维铮常用电子元器件手册[M].哈尔滨工业大学出版社,1998.
[4]赵丁选.光机电一体化设计使用手册(上)[M].北京:化学工业出版社,201*.[5]刘迎春.传感器原理,设计与应用[M].长沙:国防科技大学出版社,1989.
光传感器是利用光敏元件将光信号转换为电信号的传感器,它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光传感器是目前产量最多、应用最广的传感器之一,它在自动控制和非电量电测技术中占有非常重要的地位。
光敏传感器的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、光电耦合器、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。
友情提示:本文中关于《铁路司机技师论文素材》给出的范例仅供您参考拓展思维使用,铁路司机技师论文素材:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《铁路司机技师论文素材》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/580314.html
- 上一篇:铁路货运营销论文