公文素材库 首页

生物化学考试总结

时间:2019-05-29 03:08:17 网站:公文素材库

生物化学考试总结

一、名词解释:

新陈代谢:生物体内物质不断地进行着的化学变化称为新陈代谢。

生物氧化:生物氧化指在体内氧化生成二氧化碳和水,并释放出能量的过程。高能磷酸化合物:含有高能磷酸键的化合物称高能磷酸化合物。

乳酸循环:血乳酸经血液循环运送至肝脏,通过糖异生作用合成肝糖原和葡萄糖,再进入血

液补充血糖的消耗或被肌肉摄取合成肌糖原,这个过程称为乳酸循环。

糖异生作用:由非糖物质转变为葡萄糖或糖原的过程称为糖异生作用。

乳酸穿梭;在乳酸氧化过程中,运动开始时,某些组织中存在一中“乳酸相对量生成”状态,

使得乳酸在体内分布不均匀,这就产生了乳酸穿梭现象。

三羧酸循环:乙酰辅酶A在线粒体中,先于草酰乙酸缩合成柠檬酸,再经过一系列酶促反

应,最后生成草酰乙酸;接着重复上述过程,形成一个连续、不可逆的循环反应,消耗的是乙酰CoA,最终转化为二氧化碳和水。这个循环首先生成的是3个羧基的柠檬酸,故称为三羧酸循环。

酮体:在某些组织如肝细胞内脂肪酸氧化并不完全,生成乙酰CoA有一部分变成乙酰乙酸、

β羟丁酸和丙酮,这三种产物统称为酮体。

必需脂肪酸:把维持人体正常生长所需而体内又不能合成必须从食物中摄取的脂肪酸称为必

须脂肪酸。

必需氨基酸:肌体无法自身合成,必须由食物途径获得的氨基酸称之为必需氨基酸。氮平衡:人体摄入的食物中的含氮量和排泄物中的含氮量相等的情况称为氮平衡。半时反应:运动中消耗的物质,在运动后的恢复期中,数量增加至运动前数量的一半所需要

的时间称半时反应;而运动中代谢的产物,在运动后的恢复期中,数量减少一半所需要的时间也称半时反应。

乳酸阈:用血乳酸浓度的变化特点来判断的无氧阈又称乳酸阈。

运动性蛋白尿:由于运动引起的尿中蛋白质含量增多的现象称为运动性蛋白尿。

最高乳酸间歇训练法:采用大强度运动,运动时间为1~2min间歇休息了3~5min的间歇训练法。

乳酸阈训练:以即血乳酸浓度达到4mmol/L时所对应的运动强度作为训练负荷。

持续性耐力训练:是指在相对较长的时间里,用较稳定的中等强度,不间歇连续进行练习地方法,以提高有氧代谢能力。

二、填空题:

1、运动人体的物质组成。(糖、脂质、蛋白质、核酸、维生素、水和无机盐)2、人体能源物质。(糖、脂质、蛋白质)3、ATP是生命活动的直接能量供应者。

4、运动强度与血清酶活性。(运动强度越大,血清酶活性增加明显.)5、蛋白质的基本单位。(氨基酸)

6、糖有氧、无氧代谢的终产物。(水二氧化碳);(乳酸)7、三大物质代谢的中心环节。(三羧酸循环)8、空腹血糖浓度。(4.4~6.6mmol/L,总量为6克。)9、1分子葡萄糖经酵解、有氧氧化生成ATP的数目。

(一分子葡萄糖净得2分子ATP;有氧氧化生成36~38分子ATP。)

10、糖的运输形式是(葡萄糖),糖的储存形式是(糖原肌糖原、肝糖原)。11、血糖、肝糖元、肌糖原的关系:肌糖原直接供能,血糖补充,肝糖原再分解补充。12、乳酸的生成主要在(快)肌纤维、氧化在(慢)肌纤维。13、乳酸阈时的血乳酸值。(4mmol/L)14、调节人体血糖水平的主要器官。(肝脏)

15、一次三羧酸循环过程,可生成的ATP。(12个)

16、血浆游离脂肪酸在血液中运动形式是以(清蛋白)作为载体。17、机体的必需脂肪酸主要有(亚油酸)和(亚麻酸)。

18、在线粒体内一系列酶的催化下,脂肪酸逐步裂解出二碳单位(乙酰辅酶A),再经(羧

酸循环)和(呼吸链的氧化),生成二氧化碳和水,释放大量能量。19、(脂肪酸)是长时间运动骨骼肌的主要原料。

20、耐力训练使运动员在进行耐力运动时利用脂肪供能较非耐力运动员(增加),从而有利

于节省体内(节省体内糖)的储备,达到提高耐力的作用。

21、有氧运动能增加血浆中(高密度脂蛋白)的升高和(低密度脂蛋白)的降低,从而增加

胆固醇逆向转运能力,降低心血管疾病的发生。

22、运动强度和持续时间是影响脂代谢的重要因素,当强度达到65%最大摄氧量运动30分

钟时,脂肪供能作用最大,脂肪与糖的供能比例约为(1:1)。

23、(乙酰辅酶A)是三大能源物质分解代谢共同的中间代谢物。(三羧酸循环)是三大能源

物质分解代谢最终的共同途径。三大能源物质氧化分解释放的能量均储存在(ATP)的高能磷酸键中。

24、能量的释放和利用是以(ATP)为中心的。

25、在短时间,大强度的运动中,ATP的生成主要由(磷酸原系统)系统提供。

26、在最大强度运动(30~60s)时,糖酵解达最大速率,此后其供能速率逐渐下降,可维

持(2~3min)。

27、运动时脂肪供能的比例随着运动强度的增大而(减少),随着运动持续时间的延长而(增加)。

28、运动时有氧代谢主要受(组织供氧量)和(可供肌肉利用的能源物质含量)的调节。29、极限强度运动至力竭时,(磷酸原)接近耗竭。

30、在长时间运动前期,(肝糖原)分解是血液葡萄糖的主要来源,在长时间运动后期,(糖

异生)成为肝释放葡萄糖的主要来源。

31、运动后垢恢复及代谢产物的清除,必须依靠(能源物质的有氧氧化)。

32、按发生的部位和机制不同,将运动性疲劳分为(中枢性疲劳)和(外周性疲劳)。33、短时间大强度运动中运动性疲劳发生时,主要表现为(磷酸原)、(糖原)的大量消耗,(乳酸)生成和堆积。运动至力竭时,(磷酸肌酸)接近耗竭,(ATP)浓度下降,血乳酸浓度明显(增加)。34、耐力运动中运动性疲劳的发生与(肌糖原)的大量消耗、(血糖浓度)的下降、(体温)的升高和(水盐)代谢紊乱有关。

35、在进行10秒全力运动的间歇训练时,每次间歇运动之间的间歇时间为(20~30)秒。这样既可以保证(磷酸原)足够数量的恢复,又不会出现间歇时间过长影响训练效率。36、血乳酸的变化与动用的能量系统种类有关。血乳酸浓度最小,一般不超过4mmol/L的是(磷酸原供能系统);血乳酸浓度在4mmol/L左右的是(有氧氧化供能系统);血乳酸浓度最高的是(糖酵解供能系统)。

37、有“训练标尺”之美称的生化指标是(血乳酸)。

38、血尿素与运动人体的(机能状态)、(疲劳程度)以及(运动负荷)的大小有关。在进行长时间、较大强度的运动时,血尿素变化比较明显。所以,常用血尿素指标评定(运动负荷)。

39、在大运动量训练初期,运动员的血红蛋白往往易出现(下降),经过一段时期的训练适应后,血红蛋白可出现(回升)。

40、(血睾酮皮质醇)可以了解体内合成代谢和分解代谢的平衡状态,是目前公认的监测过度训练及疲劳恢复状态的最灵敏指标。

41、运动员从事短时间激烈运动时,乳酸越少成绩越好,说明磷酸原供能能力(强)。42、在缺氧状态下运动,(乳酸)的生成量可作为区别磷酸原系统和糖无氧供能系统供能能力的主要指标。

43、乳酸阈是评定(有氧氧化)供能能力的重要指标,通常认为是(4)mmol/L,在测定乳酸阈时常采用的负荷是(递增)。44、尿肌酐是(磷酸肌酸)的代谢产物。

45、儿童少年的肌纤维较成人(细),肌肉蛋白质数量(少),能量储备(少),肌力(小),所以耐力差、易疲劳。

46、儿童少年乳酸阈对应的血乳酸浓度比成人(低)。

47、与成人相比,儿童少年磷酸原恢复的半时反应(时间少),起始速度(快)。

48、由于儿童少年运动后(血乳酸)的恢复和(乳酸)的消除速度比成人快。因此,儿童少年在体育教学与训练中可以通过适当地缩短练习之间的间歇时间,增加运动密度的办法来提高运动负荷。

49、女子的最大摄氧量比男子(小),但其骨骼肌中糖有氧代谢酶的活性(高),而且女子能更多利用(脂肪)供能,因此女子耐力存在很大潜力。

50、女运动员“三联症”是指进食障碍,(闭经)和(提早发生骨质疏松)。51、性更年期的骨质疏松与(雌激素)的下降有着非常密切的关系。

52、女运动员由于运动量大,而且限制膳食控体重,因而易出现(铁丢失)丢失造成运动性贫血。

53、“代谢综合症”其特征表现为“六高一脂”,即(高体重)、(高血压)、(高血脂)、(高血糖)、(高血尿酸症)、(高胰岛素血症)和(脂肪肝)。54、(不良生活习惯)是代谢综合症的最大诱因。

55、影响糖酵解供能系统的生化因素包括(糖酵解过程的限速酶)和(乳酸生成)。56、在60-85%最大摄氧量强度运动时,(运动前肌糖原的储备量多少)是有氧代谢能力的限制因素。

57、对无氧-低乳酸训练:要求运动强度达到最大,运动时间在(10)秒以内,间歇休息不少于(30)秒,组间间歇时间以(4~5min)分钟为宜。

58、提高有氧代谢能力的训练方法有(有氧代谢的间歇训练)、(乳酸阈训练)、(持续性耐力训练)和(高原训练)。

三、简答题:

1、试述ATP的生物学功能及其再合成途径。

答:ATP的生物学功能有:(1)生命活动的直接能源;(2)合成磷酸肌酸和其他高能磷酸化合物。

ATP的再合成途径:(1)高能磷酸化合物快速合成ATP;(2)糖无氧酵解再合成ATP;(3)有氧代谢再合成ATP。2、试述生物氧化在生命活动中的意义。

答:(1)能量逐渐释放,持续利用;(2)合成人体的直接能源ATP;(3)产生热量,维持体温。

3、运动引起血清酶活性增高的影响因素有哪些?

答:(1)运动强度;(2)运动时间;(3)运动水平;(4)环境;(5)运动方式。4、简述糖酵解的意义。

答:(1)某些少数组织细胞获取能量的方式;(2)糖酵解是剧烈运动时能量的主要来源。5、简述乳酸消除的途径。

(1)乳酸的氧化;(2)乳酸的糖异生;(3)在肝脏合成其他物质。6、糖异生作用在运动中的意义。

(1)弥补体内糖量不足,维持血糖相对稳定;(2)乳酸异生为糖有利于运动中乳酸消除。7、运动中糖的生物学功能。

(1)糖可提供肌体所需的能量;(2)糖在脂肪代谢中的调节作用;

(3)糖具有节约蛋白质的作用;(4)糖具有促进运动性疲劳恢复恢复的作用8、运动时酮体代谢的生理意义。

(1)酮体是体内能源物质转运输的一种形式;(2)酮体参与脑组织和肌肉的能量代谢;(3)参与脂肪酸动员的调节;

(4)血、尿酮体浓度可评定体内糖储备状况。9、运动时血浆游离脂肪酸的利用。

答:短时间大强度运动时,骨骼肌摄取血浆FFA的数量有限,血浆游离脂肪酸供能意义不

大。超过2030min的长时间中等强度运动时运动中,血液中FFA持续而缓慢的升高,肌细胞吸收血浆FFA功能的比例增大。长时间耐力运动开始的数分钟内,由于大量肌群参与工作,血浆FFA浓度出现暂时下降,然后逐渐升高。10、简述支链氨基酸与运动的关系。

答:(1)支链氨基酸是长时间运动时参与供能的重要氨基酸;

(2)支链氨基酸与运动性中枢疲劳有关:长时间运动时,由于支链氨基酸参与供能的增加,血浆支链氨基酸下降,从而进入大脑的色氨酸数量上升,此时中枢神经系统抑制过程增强,进而导致中枢神经系统疲劳。11、运动中三大供能系统的相互关系。

答:(1)运动过程中骨骼肌各供能系统同时发挥作用,肌肉可以利用所有的能源物质。(2)各供能系统的最大输出功率差异较大,其顺序为:磷酸原系统→糖酵解系统→糖有氧氧化→脂肪氧化,以50的速度递减。(3)各供能系统维持运动时间不同:以最大功率进行运动时,磷酸原系统仅能运动68s,糖酵解系统供能最大强度运动3060s,有氧代谢供能系统课维持23min。(4)运动后能源物质的恢复及代谢产物的清楚,必须依靠有氧代谢供能,所以有氧代谢是机体恢复的主要代谢方式。12、简述高糖膳食训练法。

答:运动前一周进行大运动负荷的训练,耗尽肌糖原;其后23天食用低糖膳食,并进行运动;以后再食用3天的高糖膳食,不运动或轻微运动,这样可使肌糖原的储量增加24倍。

13、简述运动人体机能评定的意义:

⑴运动员科学选材的依据;⑵评定与监控机能状态的依据;⑶评定运动员训练效果的依据;⑷运动者合理营养的依据;⑸预测运动成绩的依据。

14、短跑训练是为何采用10秒的全力跑,而间歇时间不少30秒。

答:短跑训练是发展磷酸原供能系统的训练,一次最大强度练习时应掌握在10s内,这是由有磷酸原供能系统的最大输出功率和供能时间决定的。间歇时间应根据CP恢复的半时反应来决定的,由于CP恢复的半时反应约为30s,所以最适宜的休息间歇时间不少于30s。

四、论述题:

1、试述葡萄糖-丙氨酸循环过程并说明其生物学意义?

答:循环过程:骨骼肌和心肌中的糖分解代谢过程加强,生成大量的丙酮酸。丙酮酸的浓度逐渐增高,其中大部分丙酮酸进入线粒体进一步氧化,部分丙酮酸还原成乳酸,还有一部分丙酮酸经过氨基酸作用生成丙氨酸。生成的丙氨酸会随血液血液循环到肝,再在肝作为糖异生的“原材料”,异生成为葡萄糖再输入到血液以维持血糖浓度的稳定。意义:丙氨酸在肝脏异生为糖,有利于维持血糖稳定;防止运动肌丙酮酸浓度升高所导致的乳酸增加;将肌肉中的NH3以无毒形式运输到肝脏,避免血氨浓度升高,对健康及维持运动能力有利。

2、试分析马拉松跑的能量代谢特点。

答:(1)马拉松是以有氧代谢供能为主的项目,运动开始时,以磷酸原和糖酵解供能,在运动中靠有氧氧化供能,在运动30min后,脂肪酸供能起了主要作用,在运动后期,蛋白质分解供能。马拉松运动虽然是供在中途和加速冲刺过程中,糖酵解供能也起主要作用。(2)马拉松运动是耐力性运动项目,产生运动性疲劳的发生与肌糖原的大量消耗,血糖浓度下降,体温的升高和水盐代谢的紊乱有关。(3)持续性耐力训练和乳酸阈训练3、在训练周期中,如何用血尿素来评价机体对负荷的适应情况。

答:在训练周期内,测定血尿素水平的动态变化,有以下几种类型:第一,在训练中血尿素含量不变;第二,在训练起开始上升,然后逐渐恢复正常;第三,在训练中始终升高;第一类型说明运动负荷小;第二种类型说明运动负荷足够大,但身体能适应;第三种类型说明运动负荷过大,或上一周训练后身体还未恢复,这时就要对运动负荷进行控制。运用血尿素这一指标评定身体对训练的适应时应选择大运动负荷的训练;在训练前、后次日早晨取血测血尿素。

4、举一例说明血乳酸评定速度耐力训练效果的方法。

答:有三种:乳酸能商(LQ)评定法、实验室负荷法、400米全力跑血乳酸评定法。我采用实验室负荷法,依据大强度运动中,乳酸产生越多,速度耐力越好。采用跑台法:在跑台法中,让运动员以一定的坡度(男性7.5,女性5)、一定的速度(男性6.1m/s,女性5.6m/s)全力运动到筋疲力尽,并分别于运动前、后的即刻3、4、5、6、8、10、12min测定血乳酸值。如果运动员跑的时间越长,则其体内所产生的乳酸阈值越高,其无氧耐力就越好。

5、采用何种训练方法可以提高100米游泳运动员的供能能力,为什么?

答:主要采用最高乳酸阈间歇训练方法,因为机体在无氧代谢运动中乳酸生成量越大,说明糖酵解供能的比例越大,最高乳酸训练的目的就是使糖酵解供能能力达到最高水平,以糖酵解供能为主的运动项目的运动能力在训练中可通过调整间歇的时间运动与休息的比例来进行提高乳酸生成能力,刺激机体产生更多的乳酸,提高耐受乳酸能力。6、什么是乳酸阈训练?试述其能够发展有氧代谢能力的原因。

答:乳酸阈训练:以即血乳酸浓度达到4mmol/L时对应的运动强度作为训练负荷。

原因:一般认为,运动时当机体血乳酸浓度达到4mmol/L时,是机体由有氧代谢为主向无氧代谢供能为主转变的转折点,所以,进行乳酸阈强度的运动,机体处于最大有氧代谢供能状态,机体不会产生过多的乳酸,能维持较长的运动时间。

7、试述马拉松运动时:①能量代谢的特点分析;②产生运动性疲劳的主要原因;③采用哪两种训练方法可以提高运动能力;

答:①能量代谢的特点:马拉松运动时间长,强度小,运动时间为2个小时左右,以有氧氧化供能为主,运动开始时,ATP首先供能,ATP分解为ADP和磷酸,同时释放出大量能量,以满足运动所需的能量,随着运动的继续,ADP大量增加,磷酸肌酸参与供能,由于机体CP含量有限,在一定程度上,糖酵解供能。②产生运动性疲劳的原因:

1)代谢产生的疲劳物质的堆积2)活动所需物质的消耗3)基质生理生化性质的改变4)调节机能下降

③采用高原训练和乳酸阈训练可以提高运动能力。

扩展阅读:生物化学考试重点 总结

第一章氨基酸和蛋白质

一、组成蛋白质的20种氨基酸的分类1、非极性氨基酸

包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸2、极性氨基酸

极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸

酸性氨基酸:天冬氨酸、谷氨酸

碱性氨基酸:赖氨酸、精氨酸、组氨酸

其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸属于亚氨基酸的是:脯氨酸

含硫氨基酸包括:半胱氨酸、蛋氨酸

注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组

二、氨基酸的理化性质1、两性解离及等电点

氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。2、氨基酸的紫外吸收性质

芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。3、茚三酮反应

氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。

三、肽

两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。

多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。人体内存在许多具有生物活性的肽,重要的有:谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。

四、蛋白质的分子结构

1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。主要化学键:肽键,有些蛋白质还包含二硫键。

2、蛋白质的高级结构:包括二级、三级、四级结构。

1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础,多为短距离效应。可分为:

α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的方向与螺旋长轴基本平形。

β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象稳定.β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。

无规卷曲:无确定规律性的那段肽链。主要化学键:氢键。

2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。

主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。

3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。

主要化学键:疏水键、氢键、离子键

五、蛋白质结构与功能关系1、蛋白质一级结构是空间构象和特定生物学功能的基础。一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。

尿素或盐酸胍可破坏次级键β-巯基乙醇可破坏二硫键

2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为松弛态。

六、蛋白质的理化性质

1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在一定的溶液PH条件下可解离成带负电荷或正电荷的基团。

2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。包括:a.丙酮沉淀,破坏水化层。也可用乙醇。

b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的稳定因素电荷而沉淀。

3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而

导致其理化性质的改变和生物活性的丧失。主要为二硫键和非共价键的破坏,不涉及一级结构的改变。变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。

4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。

5、蛋白质的呈色反应

a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3

b.双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。

七、蛋白质的分离和纯化1、沉淀,见六、2

2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。根据支撑物不同,有薄膜电泳、凝胶电泳等。

3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。4、层析:

a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。

b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。

5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

八、多肽链中氨基酸序列分析

a.分析纯化蛋白质的氨基酸残基组成

(蛋白质水解为个别氨基酸,测各氨基酸的量及在蛋白质中的百分组成)↓

测定肽链头、尾的氨基酸残基二硝基氟苯法(DNP法)

头端尾端羧肽酶A、B、C法等丹酰氯法↓

水解肽链,分别分析

胰凝乳蛋白酶(糜蛋白酶)法:水解芳香族氨基酸的羧基侧肽键胰蛋白酶法:水解赖氨酸、精氨酸的羧基侧肽键溴化脯法:水解蛋氨酸羧基侧的肽键↓

Edman降解法测定各肽段的氨基酸顺序

(氨基末端氨基酸的游离α-氨基与异硫氰酸苯酯反应形成衍生物,用层析法鉴定氨基酸种类)

b.通过核酸推演氨基酸序列。

第二章核酸的结构与功能

一、核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。

两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。核糖核酸(RNA),存在于细胞质和细胞核内。1、碱基:

NH2

NH2OCH3OO

OOONH2

胞嘧啶胸腺嘧啶尿嘧啶鸟嘌呤腺嘌呤

嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。

2、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。

二、核酸的一级结构

核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。

三、DNA的空间结构与功能1、DNA的二级结构

DNA双螺旋结构是核酸的二级结构。双螺旋的骨架由糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点:

a.DNA是一反向平行的互补双链结构亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。

b.DNA是右手螺旋结构螺旋直径为2nm。每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。

c.DNA双螺旋结构稳定的维系横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。

2、DNA的三级结构

三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。在核小体的基础上,DNA链经反复折叠形成染色体。

3、功能

DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

DNA中的核糖和磷酸构成的分子骨架是没有差别的,不同区段的DNA分子只是碱基的排列顺序不同。

四、RNA的空间结构与功能DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。如:

名称功能

核蛋白体RNA(rRNA)核蛋白体组成成分信使RNA(mRNA)蛋白质合成模板转运RNA(tRNA)转运氨基酸

不均一核RNA(HnRNA)成熟mRNA的前体小核RNA(SnRNA)参与HnRNA的剪接、转运小核仁RNA(SnoRNA)rRNA的加工和修饰

1、信使RNA(半衰期最短)

1)hnRNA为mRNA的初级产物,经过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质

2)大多数的真核mRNA在转录后5′末端加上一个7-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的稳定性。3′末端多了一个多聚腺苷酸尾巴,可能与mRNA从核内向胞质的转位及mRNA的稳定性有关。

3)功能是把核内DNA的碱基顺序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列顺序。mRNA分子上每3个核苷酸为一组,决定肽链上某一个氨基酸,为三联体密码。

2、转运RNA(分子量最小)

1)tRNA分子中含有10%~20%稀有碱基,包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。

2)二级结构为三叶草形,位于左右两侧的环状结构分别称为DHU环和Tψ环,位于下方的环叫作反密码环。反密码环中间的3个碱基为反密码子,与mRNA上相应的三联体密码子形成碱基互补。所有tRNA3′末端均有相同的CCA-OH结构。

3)三级结构为倒L型。

4)功能是在细胞蛋白质合成过程中作为各种氨基酸的戴本并将其转呈给mRNA。3、核蛋白体RNA(含量最多)

1)原核生物的rRNA的小亚基为16S,大亚基为5S、23S;真核生物的rRNA的小亚基为18S,大亚基为5S、5.8S、28S。真核生物的18SrRNA的二级结构呈花状。

2)rRNA与核糖体蛋白共同构成核糖体,它是蛋白质合成机器--核蛋白体的组成成分,参与蛋白质的合成。

4、核酶:某些RNA分子本身具有自我催化能,可以完成rRNA的剪接。这种具有催化作用的RNA称为核酶。

五、核酸的理化性质1、DNA的变性

在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。监测是否发生变性的一个最常用的指标是DNA在

紫外区260nm波长处的吸光值变化。解链过程中,吸光值增加,并与解链程度有一定的比例关系,称为DNA的增色效应。紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm),一种DNA分子的Tm值大小与其所含碱基中的G+C比例相关,G+C比例越高,Tm值越高。

2、DNA的复性和杂交

变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。不同来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。杂交可发生于DNA-DNA之间,RNA-RNA之间以及RNA-DNA之间。

六、核酸酶(注意与核酶区别)

指所有可以水解核酸的酶,在细胞内催化核酸的降解。可分为DNA酶和RNA酶;外切酶和内切酶;其中一部分具有严格的序列依赖性,称为限制性内切酶

第三章酶一、酶的组成

单纯酶:仅由氨基酸残基构成的酶。结合酶:酶蛋白:决定反应的特异性;辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤方法除去。辅基:与酶蛋白结合紧密,不能用透析或超滤方法除去。酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。

参与组成辅酶的维生素

转移的基团辅酶或辅基所含维生素

氢原子NAD+、NADP+尼克酰胺(维生素PP)FMN、FAD维生素B2醛基TPP维生素B1

酰基辅酶A、硫辛酸泛酸、硫辛酸烷基钴胺类辅酶类维生素B12二氧化碳生物素生物素

氨基磷酸吡哆醛吡哆醛(维生素B6)甲基、等一碳单位四氢叶酸叶酸

二、酶的活性中心

酶的活性中心由酶作用的必需基团组成,这些必需基团在空间位置上接近组成特定的空间结构,能与底物特异地结合并将底物转化为产物。对结合酶来说,辅助因子参与酶活性中心的组成。但有一些必需基团并不参加活性中心的组成。

三、酶反应动力学

酶促反应的速度取决于底物浓度、酶浓度、PH、温度、激动剂和抑制剂等。1、底物浓度

1)在底物浓度较低时,反应速度随底物浓度的增加而上升,加大底物浓度,反应速度趋缓,底物浓度进一步增高,反应速度不再随底物浓度增大而加快,达最大反应速度,

此时酶的活性中心被底物饱合。

2)米氏方程式

V=Vmax〔S〕/Km+〔S〕

a.米氏常数Km值等于酶促反应速度为最大速度一半时的底物浓度。b.Km值愈小,酶与底物的亲和力愈大。

c.Km值是酶的特征性常数之一,只与酶的结构、酶所催化的底物和反应环境如温度、PH、离子强度有关,与酶的浓度无关。

d.Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比。2、酶浓度

在酶促反应系统中,当底物浓度大大超过酶浓度,使酶被底物饱和时,反应速度与酶的浓度成正比关系。

3、温度

温度对酶促反应速度具有双重影响。升高温度一方面可加快酶促反应速度,同时也增加酶的变性。酶促反应最快时的环境温度称为酶促反应的最适温度。酶的活性虽然随温度的下降而降低,但低温一般不使酶破坏。

酶的最适温度不是酶的特征性常数,它与反应进行的时间有关。4、PH

酶活性受其反应环境的PH影响,且不同的酶对PH有不同要求,酶活性最大的某一PH值为酶的最适PH值,如胃蛋白酶的最适PH约为1.8,肝精氨酸酶最适PH为9.8,但多数酶的最适PH接近中性。

最适PH不是酶的特征性常数,它受底物浓度、缓冲液的种类与浓度、以及酶的纯度等因素影响。

5、激活剂

使酶由无活性或使酶活性增加的物质称为酶的激活剂,大多为金属离子,也有许多有机化合物激活剂。分为必需激活剂和非必需激活剂。

6、抑制剂

凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。大多与酶的活性中心内、外必需基团相结合,从而抑制酶的催化活性。可分为:

1)不可逆性抑制剂:以共价键与酶活性中心上的必需基团相结合,使酶失活。此种抑制剂不能用透析、超滤等方法去除。又可分为:

a.专一性抑制剂:如农药敌百虫、敌敌畏等有机磷化合物能特民地与胆碱酯酶活性中心丝氨酸残基的羟基结合,使酶失活,解磷定可解除有机磷化合物对羟基酶的抑制作用。

b.非专一性抑制剂:如低浓度的重金属离子如汞离子、银离子可与酶分子的巯基结合,使酶失活,二巯基丙醇可解毒。化学毒气路易士气是一种含砷的化合物,能抑制体内的巯基酶而使人畜中毒。

2)可逆性抑制剂:通常以非共价键与酶和(或)酶-底物复合物可逆性结合,使酶活性降低或消失。采用透析或超滤的方法可将抑制剂除去,使酶恢复活性。可分为:

a.竞争性抑制剂:与底物竞争酶的活性中心,从而阻碍酶与底物结合形成中间产物。如丙二酸对琥珀酸脱氢酶的抑制作用;磺胺类药物由于化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争抑制剂,抑制二氢叶酸的合成;许多抗代谢的抗癌药物,如氨甲蝶呤(MTX)、5-氟尿嘧啶(5-FU)、6-巯基嘌呤(6-MP)等,几乎都是酶的竞争性抑制剂,分别抑制四氢叶酸、脱氧胸苷酸及嘌呤核苷酸的合成。

Vmax不变,Km值增大

b.非竞争性抑制剂:与酶活性中心外的必需基团结合,不影响酶与底物的结合,酶

和底物的结合也不影响与抑制剂的结合。

Vmax降低,Km值不变

c.反竞争性抑制剂:仅与酶和底物形成的中间产物结合,使中间产物的量下降。Vmax、Km均降低

四、酶活性的调节1、酶原的激活

有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定条件下,这些酶的前体水解一个或几个特定的肽键,致使构象发生改变,表现出酶的活性。酶原的激活实际上是酶的活性中心形成或暴露的过程。生理意义是避免细胞产生的蛋白酶对细胞进行自身消化,并使酶在特定的部位环境中发挥作用,保证体内代谢正常进行。

2、变构酶

体内一些代谢物可以与某些酶分子活性中心外的某一部位可逆地结合,使酶发生变构并改变其催化活性,有变构激活与变构抑制。

3、酶的共价修饰调节

酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,这一过程称为酶的共价修饰。在共价修饰过程中,酶发生无活性与有活性两种形式的互变。酶的共价修饰包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化与脱甲基化、腺苷化与脱腺苷化等,其中以磷酸化修饰最为常见。

五、同工酶

同工酶是指催化相同的化学反应,而酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。同工酶是由不同基因或等位基因编码的多肽链,或由同一基因转录生成的不同mRNA翻译的不同多肽链组成的蛋白质。翻译后经修饰生成的多分子形式不在同工酶之列。同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中。

如乳酸脱氢酶是四聚体酶。亚基有两型:骨骼肌型(M型)和心肌型(H型)。两型亚基以不同比例组成五种同工酶,如LDH1(HHHH)、LDH2(HHHM)等。它们具有不同的电泳速度,对同一底物表现不同的Km值。单个亚基无酶的催化活性。心肌、肾以LDH1为主,肝、骨骼肌以LDH5为主。

肌酸激酶是二聚体,亚基有M型(肌型)和B型(脑型)两种。脑中含CK1(BB型);骨骼肌中含CK3(MM型);CK2(MB型)仅见于心肌。

第四章维生素

一、脂溶性维生素1、维生素A

作用:与眼视觉有关,合成视紫红质的原料;维持上皮组织结构完整;促进生长发育。

缺乏可引起夜盲症、干眼病等。2、维生素D

作用:调节钙磷代谢,促进钙磷吸收。缺乏儿童引起佝偻病,成人引起软骨病。3、维生素E

作用:体内最重要的抗氧化剂,保护生物膜的结构与功能;促进血红素代谢;动物实验发现与性器官的成熟与胚胎发育有关。

4、维生素K

作用:与肝脏合成凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ有关。缺乏时可引起凝血时间延长,血块回缩不良。

二、水溶性维生素1、维生素B1

又名硫胺素,体内的活性型为焦磷酸硫胺素(TPP)

TPP是α-酮酸氧化脱羧酶和转酮醇酶的辅酶,并可抑制胆碱酯酶的活性,缺乏时可引起脚气病和(或)末梢神经炎。

2、维生素B2又名核黄素,体内的活性型为黄素单核苷酸","p":{"h":15.一、糖酵解1、过程:见图1-1

糖酵解过程中包含两个底物水平磷酸化:一为1,3-二磷酸甘油酸转变为3-磷酸甘油酸;二为磷酸烯醇式丙酮酸转变为丙酮酸。

2、调节

1)6-磷酸果糖激酶-1变构抑制剂:ATP、柠檬酸

变构激活剂:AMP、ADP、1,6-双磷酸果糖(产物反馈激,比较少见)和2,6-双磷酸果糖(最强的激活剂)。

2)丙酮酸激酶

变构抑制剂:ATP、肝内的丙氨酸变构激活剂:1,6-双磷酸果糖3)葡萄糖激酶

变构抑制剂:长链脂酰辅酶A注:此项无需死记硬背,理解基础上记忆是很容易的,如知道糖酵解是产生能量的,那么有ATP等能量形式存在,则可抑制该反应,以利节能,上述的柠檬酸经三羧酸循环也是可以产生能量的,因此也起抑制作用;产物一般来说是反馈抑制的;但也有特殊,如上述的1,6-双磷酸果糖。特殊的需要记忆,只属少数。以下类同。关于共价修饰的调节,只需记住几个特殊的即可,下面章节提及。

(1)糖原1-磷酸葡萄糖

(2)葡萄糖己糖激酶6-磷酸葡萄糖6-磷酸果糖6-磷酸果糖-1-激酶ATPADPATPADP磷酸二羟丙酮1,6-二磷酸果糖3-磷酸甘油醛1,3-二磷酸甘油酸

NAD+NADH+H+3-磷酸甘油酸2-磷酸甘油酸磷酸烯醇式丙酮酸丙酮酸激酶

ADPATPADPATP

丙酮酸乳酸

NADH+H+NAD+

注:红色表示该酶为该反应的限速酶;蓝色ATP表示消耗,红色ATP和NADH等表示生成的能量或可以转变为能量的物质。以下类同。

(图1-1)

3、生理意义

1)迅速提供能量,尤其对肌肉收缩更为重要。若反应按(1)进行,可净生成3分子ATP,若反应按(2)进行,可净生成2分子ATP;另外,酵解过程中生成的2个NADH在有氧条件下经电子传递链,发生氧化磷酸化,可生成更多的ATP,但在缺氧条件下丙酮酸转化为乳酸将消耗NADH,无NADH净生成。

2)成熟红细胞完全依赖糖酵解供能,神经、白细胞、骨髓等代谢极为活跃,即使

不缺氧也常由糖酵解提供部分能量。

3)红细胞内1,3-二磷酸甘油酸转变成的2,3-二磷酸甘油酸可与血红蛋白结合,使氧气与血红蛋白结合力下降,释放氧气。

4)肌肉中产生的乳酸、丙氨酸(由丙酮酸转变)在肝脏中能作为糖异生的原料,生成葡萄糖。

4、乳酸循环

葡萄糖葡萄糖葡萄糖

糖糖异酵生解途途径径丙酮酸丙酮酸

乳酸乳酸乳酸(肝)(血液)(肌肉)

乳酸循环是由于肝内糖异生活跃,又有葡萄糖-6-磷酸酶可水解6-磷酸葡萄糖,释出葡萄糖。肌肉除糖异生活性低外,又没有葡萄糖-6-磷酸酶。

生理意义:避免损失乳酸以及防止因乳酸堆积引起酸中毒。

二、糖有氧氧化1、过程

1)、经糖酵解过程生成丙酮酸

2)、丙酮酸丙酮酸脱氢酶复合体乙酰辅酶ANAD+NADH+H+

限速酶的辅酶有:TPP、FAD、NAD+、CoA及硫辛酸10楼

3)、三羧酸循环

草酰乙酸+乙酰辅酶A柠檬酸合成酶柠檬酸异柠檬酸异柠檬酸脱氢酶NAD+NADH+H+α-酮戊二酸α-酮戊二酸脱氢酶复合体琥珀酸酰CoA琥珀酸

NAD+NADH+H+GDPGTP

延胡索酸苹果酸草酰乙酸FADFADH2NAD+NADH+H+

三羧酸循环中限速酶α-酮戊二酸脱氢酶复合体的辅酶与丙酮酸脱氢酶复合体的辅酶同。

三羧酸循环中有一个底物水平磷酸化,即琥珀酰COA转变成琥珀酸,生成GTP;加上糖酵解过程中的两个,本书中共三个底物水平磷酸化。

2、调节

1)丙酮酸脱氢酶复合体

抑制:乙酰辅酶A、NADH、ATP

激活:AMP、钙离子

2)异柠檬酸脱氢酶和α-酮戊二酸脱氢酶NADH、ATP反馈抑制3、生理意义

1)基本生理功能是氧化供能。

2)三羧酸循环是体内糖、脂肪和蛋白质三大营养物质代谢的最终共同途径。3)三羧酸循环也是三大代谢联系的枢纽。4、有氧氧化生成的ATP

葡萄糖有氧氧化生成的ATP反应辅酶ATP

第一阶段葡萄糖6-磷酸葡萄糖-16-磷酸果糖1,6双磷酸果糖-1

2*3-磷酸甘油醛2*1,3-二磷酸甘油酸NAD+2*3或2*2(详见)2*1,3-二磷酸甘油酸2*3-磷酸甘油酸2*12*磷酸烯醇式丙酮酸2*丙酮酸2*1

第二阶段2*丙酮酸2*乙酰CoANAD+2*3

第三阶段2*异柠檬酸2*α-酮戊二酸NAD+2*32*α-酮戊二酸2*琥珀酰CoANAD+2*32*琥珀酰CoA2*琥珀酸2*12*琥珀酸2*延胡索酸FAD2*22*苹果酸2*草酰乙酸NAD+2*3净生成38或36个ATP5、巴斯德效应

有氧氧化抑制糖酵解的现象。

三、磷酸戊糖途径1、过程

6-磷酸葡萄糖NADP+

6-磷酸葡萄糖脱氢酶NADPH

6-磷酸葡萄糖酸内酯

6-磷酸葡萄糖酸NADP+

NADPH

5-磷酸核酮糖

5-磷酸核糖5-磷酸木酮糖

7-磷酸景天糖3-磷酸甘油醛

5-磷酸木酮糖4-磷酸赤藓糖6-磷酸果糖

3-磷酸甘油醛6-磷酸果糖

6-磷酸果糖

2、生理意义

1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3-磷酸甘油醛和6-磷酸果糖经基团转移反应生成。

2)提供NADPH

a.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。

b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。

c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。

四、糖原合成与分解1、合成过程:

葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖UDPG焦磷酸化酶尿苷二磷酸葡萄糖UTPPPi(UDPG)糖原合成酶(G)n+1+UDP(G)n

注:1)UDPG可看作是活性葡萄糖,在体内充作葡萄糖供体。2)糖原引物是指原有的细胞内较小的糖原分子,游离葡萄糖不能作为UDPG的葡萄糖基的接受体。

3)葡萄糖基转移给糖原引物的糖链末端,形成α-1,4糖苷键。在糖原合酶作用下,糖链只能延长,不能形成分支。当糖链长度达到12~18个葡萄糖基时,分支酶将约6~7个葡萄糖基转移至邻近的糖链上,以α-1,6糖苷键相接。

调节:糖原合成酶的共价修饰调节。2、分解过程:

(G)n+1磷酸化酶(G)n+1-磷酸葡萄糖6-磷酸葡萄糖葡萄糖-6-磷酸酶G+Pi

注:1)磷酸化酶只能分解α-1,4糖苷键,对α-1,6糖苷键无作用。2)糖链分解至离分支处约4个葡萄基时,转移酶把3个葡萄基转移至邻近糖链的末端,仍以α-1,4糖苷键相接,剩下1个以α-1,6糖苷键与糖链形成分支的葡萄糖基被α-1,6葡萄糖苷酶水解成游离葡萄糖。转移酶与α-1,6葡萄糖苷酶是同一酶的两种活性,合称脱支酶。

3)最终产物中约85%为1-磷酸葡萄糖,其余为游离葡萄糖。调节:磷酸化酶受共价修饰调节,葡萄糖起变构抑制作用。

五、糖异生途径1、过程

乳酸丙氨酸等生糖氨基酸NADH

丙酮酸丙酮酸

ATP丙酮酸丙酮酸

丙酮酸羧化酶草酰乙酸草酰乙酸(线粒体内)

天冬氨酸苹果酸

GTP天冬氨酸NADH

草酰乙酸苹果酸磷酸烯醇式丙酮酸羧激酶磷酸烯醇式丙酮酸

2-磷酸甘油酸(胞液)

ATP3-磷酸甘油酸

NADH1,3-二磷酸甘油酸甘油ATP

3-磷酸甘油醛磷酸二羟丙酮3-磷酸甘油NADH

1,6-双磷酸果糖

果糖双磷酸酶6-磷酸果糖

6-磷酸葡萄糖1-磷酸葡萄糖糖原葡萄糖-6-磷酸酶葡萄糖

注意:1)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需经过草酰乙酸的中间步骤,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。但是,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。

2)在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,其脱氢生成丙酮酸时已在胞液中产生了NADH以供利用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸β-氧化或三羧酸循环。

3)甘油异生成糖耗一个ATP,同时也生成一个NADH2、调节

2,6-双磷酸果糖的水平是肝内调节糖的分解或糖异生反应方向的主要信号,糖酵解加强,则糖异生减弱;反之亦然。

3、生理意义

1)空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。

2)补充肝糖原,摄入的相当一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。合成糖原的这条途径称三碳途径。

3)调节酸碱平衡,长期饥饿进,肾糖异生增强,有利于维持酸碱平衡。

第二章脂类代谢

一、甘油三酯的合成代谢

合成部位:肝、脂肪组织、小肠,其中肝的合成能力最强。合成原料:甘油、脂肪酸

1、甘油一酯途径(小肠粘膜细胞)

2-甘油一酯脂酰CoA转移酶1,2-甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA脂酰CoA2、甘油二酯途径(肝细胞及脂肪细胞)

葡萄糖3-磷酸甘油脂酰CoA转移酶1脂酰-3-磷酸甘油脂酰CoA转移酶脂酰CoA脂酰CoA

磷脂酸磷脂酸磷酸酶1,2甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA

二、甘油三酯的分解代谢

1、脂肪的动员储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。

甘油三酯激素敏感性甘油三酯脂肪酶甘油二酯甘油一酯甘油+FFA+FFA+FFAα-磷酸甘油磷酸二羟丙酮糖酵解或糖异生途径2、脂肪酸的β-氧化

1)脂肪酸活化(胞液中)

脂酸脂酰CoA合成酶脂酰CoA(含高能硫酯键)ATPAMP2)脂酰CoA进入线粒体

脂酰CoA肉毒碱线肉毒碱脂酰CoA肉毒碱脂酰转移酶Ⅰ粒酶Ⅱ

CoASH脂酰肉毒碱体脂酰肉毒碱CoASH3)脂肪酸β-氧化

脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。

4)能量生成

以软脂酸为例,共进行7次β-氧化,生成7分子FADH2、7分子NADH及8分子

乙酰CoA,即共生成(7*2)+(7*3)+(8*12)-2=129

5)过氧化酶体脂酸氧化主要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。

三、酮体的生成和利用

组织特点:肝内生成肝外用。合成部位:肝细胞的线粒体中。

酮体组成:乙酰乙酸、β-羟丁酸、丙酮。1、生成

脂肪酸β-氧化2*乙酰CoA乙酰乙酰CoAHMGCoA合成酶羟甲基戊二酸单酰CoA

(HMGCoA)HMGCoA裂解酶乙酰乙酸β-羟丁酸脱氢酶β-羟丁酸NADH丙酮CO2

2、利用1)β-羟丁酸

ATP+HSCoA乙酰乙酸琥珀酰CoA乙酰乙酸硫激酶琥珀酰CoA转硫酶

AMP乙酰乙酰CoA琥珀酸乙酰乙酰CoA硫解酶

乙酰CoA

三羧酸循环

2)丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。

四、脂酸的合成代谢1、软脂酸的合成

合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。合成原料:乙酰CoA、ATP、NADPH、HCO3-、Mn++等。合成过程:

1)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。

2)乙酰CoA乙酰CoA羧化酶丙二酰CoAATP

3)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。经过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。

2、不饱和脂酸的合成

人体含有的不饱和脂酸主要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种

单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。

五、前列腺素及其衍生物的生成

细胞膜中的磷脂磷脂酶A2花生四烯酸PGH合成酶PGH2TXA2合成酶TXA2

PGD2、PGE2、PGI2等

脂过氧化酶氢过氧化廿碳四烯酸脱水酶白三烯(LTA4)

六、甘油磷脂的合成与代谢1、合成

除需ATP外,还需CTP参加。CTP在磷脂合成中特别重要,它为合成CDP-乙醇胺、CDP-胆碱及CDP-甘油二酯等活化中间物所必需。

1)甘油二酯途径CDP-乙醇胺CMP磷脂酰乙醇胺葡萄糖3-磷酸甘油磷脂酸甘油二酯转移酶(脑磷脂)磷脂酰胆碱CDP-胆碱CMP(卵磷脂)脑磷脂及卵磷脂主要通过此途径合成,这两类磷脂在体内含量最多。2)CDP-甘油二酯途径肌醇磷脂酰肌醇丝氨酸

葡萄糖3-磷酸甘油磷脂酸CDP-甘油二酯合成酶磷脂酰丝氨酸CTPPPi磷脂酰甘油

二磷脂酰甘油

(心磷脂)

此外,磷脂酰胆碱亦可由磷脂酰乙醇胺从S-腺苷甲硫氨酸获得甲基生成;磷脂酰丝氨酸可由磷脂酰乙醇胺羧化生成。

2、降解

生物体内存在能使甘油磷脂水解的多种磷脂酶类,根据其作用的键的特异性不同,分为磷脂酶A1和A2,磷脂酶B,磷脂酶C和磷脂酶D。

磷脂酶A2特异地催化磷酸甘油酯中2位上的酯键水解,生成多不饱和脂肪酸和溶血磷脂。后者在磷脂酶B作用,生成脂肪酸及甘油磷酸胆碱或甘油磷酸乙醇胺,再经甘油酸胆碱水解酶分解为甘油及磷酸胆碱。磷脂酶A1催化磷酸甘油酯1位上的酯键水解,产物是脂肪酸和溶血磷脂。

七、胆固醇代谢1、合成

合成部位:肝是主要场所,合成酶系存在于胞液及光面内质网中。

合成原料:乙酰CoA(经柠檬酸-丙酮酸循环由线粒体转移至胞液中)、ATP、NADPH等。合成过程:

1)甲羟戊酸的合成(胞液中)

2*乙酰CoA乙酰乙酰CoAHMGCoAHMGCoA还原酶甲羟戊酸NADPH2)鲨烯的合成(胞液中)

3)胆固醇的合成(滑面内质网膜上)合成调节:

1)饥饿与饱食饥饿可抑制肝合成胆固醇,相反,摄取高糖、高饱和脂肪膳食后,肝HMGCoA还原酶活性增加,胆固醇合成增加。

2)胆固醇胆固醇可反馈抑制肝胆固醇的合成。主要抑制HMGCoA还原酶活性。3)激素胰岛素及甲状腺素能诱导肝HMGCoA还原酶的合成,增加胆固醇的合成。胰

高血糖素及皮质醇则能抑制并降低HMGCoA还原酶的活性,因而减少胆固醇的合成;甲状腺素除能促进合成外,又促进胆固醇在肝转变为胆汁酸,且后一作用较强,因而甲亢时患者血清胆固醇含量反而下降。

14楼2、转化

1)胆固醇在肝中转化成胆汁酸是胆固醇在体内代谢的主要去路,基本步骤为:

胆酸

胆固醇7α-羟化酶7α-羟胆固醇甘氨酸或牛磺酸结合型胆汁酸

NADPH鹅脱氧胆酸胆酸肠道细菌7-脱氧胆酸

甘氨酸牛磺酸鹅脱氧胆酸石胆酸

2)转化为类固醇激素胆固醇是肾上腺皮质、睾丸,卵巢等内分泌腺合成及分泌类固醇激素的原料,如睾丸酮、皮质醇、雄激素、雌二醇及孕酮等。

3)转化为7-脱氢胆固醇在皮肤,胆固醇可氧化为7-脱氢胆固醇,后者经紫外光照射转变为维生素D。

3、胆固醇酯的合成

细胞内游离胆固醇在脂酰胆固醇脂酰转移酶(ACAT)的催化下,生成胆固醇酯;血浆中游离胆固醇在卵磷脂胆固醇脂酰转移酶(LCAT)的催化下,生成胆固醇酯和溶血卵磷酯。

八、血浆脂蛋白1、分类

1)电泳法:α、前β、β及乳糜微粒

2)超速离心法:乳糜微粒(含脂最多),极低密度脂蛋白(VLDL)、低密度脂蛋白(LDL)和高密度脂蛋白(HDL),分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白及α-脂蛋白等四类。

2、组成

血浆脂蛋白主要由蛋白质、甘油三酯、磷脂、胆固醇及其酯组成。乳糜微粒含甘油三酯最多,蛋白质最少,故密度最小;VLDL含甘油三酯亦多,但其蛋白质含量高于CM;LDL含胆固醇及胆固醇酯最多;含蛋白质最多,故密度最高。

血浆脂蛋白中的蛋白质部分,基本功能是运载脂类,称载脂蛋白。HDL的载脂蛋白主要为apoA,LDL的载脂蛋白主要为apoB100,VLDL的载脂蛋白主要为apoB、apoC,CM

的载脂蛋白主要为apoC。

3、生理功用及代谢

1)CM运输外源性甘油三酯及胆固醇的主要形式。成熟的CM含有apoCⅡ,可激活脂蛋白脂肪酶(LPL),LPL可使CM中的甘油三酯及磷脂逐步水解,产生甘油、脂酸及溶血磷脂等,同时其表面的载脂蛋白连同表面的磷脂及胆固醇离开CM,逐步变小,最后转变成为CM残粒。

2)VLDL运输内源性甘油三酯的主要形式。VLDL的甘油三酯在LPL作用下,逐步水解,同时其表面的apoC、磷脂及胆固醇向HDL转移,而HDL的胆固醇酯又转移到VLDL。最后只剩下胆固醇酯,转变为LDL。

3)LDL转运肝合成的内源性胆固醇的主要形式。肝是降解LDL的主要器官。apoB100水解为氨基酸,其中的胆固醇酯被胆固醇酯酶水解为游离胆固醇及脂酸。游离胆固醇在调节细胞胆固醇代谢上具有重要作用:①抑制内质网HMGCoA还原酶;②在转录水平上阴抑细胞LDL受体蛋白质的合成,减少对LDL的摄取;③激活ACAT的活性,使游离胆固醇酯化成胆固醇酯在胞液中储存。

4)HDL逆向转运胆固醇。HDL表面的apoⅠ是LCAT的激活剂,LCAT可催化HDL生成溶血卵磷脂及胆固醇酯。

九、高脂血症

高脂蛋白血症分型

分型脂蛋白变化血脂变化ⅠCM↑甘油三酯↑↑↑ⅡaLDL↑胆固醇↑↑

ⅡbLDL、VLDL↑胆固醇↑↑甘油三酯↑↑ⅢIDL↑胆固醇↑↑甘油三酯↑↑ⅣVLDL↑甘油三酯↑↑

ⅤVLDL、CM↑甘油三酯↑↑↑

注:IDL是中间密度脂蛋白,为VLDL向LDL的过度状态。家族性高胆固醇血症的重要原因是LDL受体缺陷

第三章氨基酸代谢

一、营养必需氨基酸

简记为:缬、异、亮、苏、蛋、赖、苯、色

二、体内氨的来源和转运1、来源

1)氨基酸经脱氨基作用产生的氨是体内氨的主要来源;2)由肠道吸收的氨;即肠内氨基酸在肠道细菌作用下产生的氨和肠道尿素经细菌尿素酶水解产生的氨。

3)肾小管上皮细胞分泌的氨主要来自谷氨酰胺在谷氨酰胺酶的催化下水解生成的氨。2、转运

1)丙氨酸-葡萄糖循环

(肌肉)(血液)(肝)

分异

肌肉蛋白质葡萄糖葡萄糖葡萄糖尿素氨基酸糖糖尿素循环

NH3解生NH3谷氨酸丙酮酸丙酮酸谷氨酸转氨酶转氨酶

α-酮戊二酸丙氨酸丙氨酸丙氨酸α-酮戊二

2)谷氨酰胺的运氨作用谷氨酰胺主要从脑、肌肉等组织向肝或肾运氨。氨与谷氨酰胺在谷氨酰胺合成酶催化下生成谷氨酰胺,由血液输送到肝或肾,经谷氨酰胺酶水解成谷氨酸和氨。

可以认为,谷氨酰胺既是氨的解毒产物,也是氨的储存及运输形式。

三、氨基酸的脱氨基作用

1、转氨基作用转氨酶催化某一氨基酸的α-氨基转移到另一种α-酮酸的酮基上,生成相应的氨基酸;原来的氨基酸则转变成α-酮酸。既是氨基酸的分解代谢过程,也是体内某些氨基酸合成的重要途径。除赖氨酸、脯氨酸及羟脯氨酸外,体内大多数氨基酸可以参与转氨基作用。如:

谷氨酸+丙酮酸谷丙转氨酶(ALT)α-酮戊二酸+丙氨酸

谷氨酸+草酰乙酸谷草转氨酶(AST)α-酮戊二酸+天冬氨酸转氨酶的辅酶是维生素B6的磷酸酯,即磷酸吡哆醛。2、L-谷氨酸氧化脱氨基作用

L-谷氨酸L-谷氨酸脱氢酶α-酮戊二酸+NH3NADH

3、联合脱氨基作用

氨基酸α-酮戊二酸NH3+NADH转氨酶谷氨酸脱氢酶

α-酮酸谷氨酸NAD+4、嘌呤核苷酸循环

上述联合脱氨基作用主要在肝、肾等组织中进行。骨骼肌和心肌中主要通过嘌呤核苷酸循环脱去氨基。

氨基酸α-酮戊二酸天冬氨酸次黄嘌呤核苷酸NH3GTP(IMP)

腺苷酸代琥珀酸腺嘌呤核苷酸(AMP)延胡索酸

α-酮酸L-谷氨酸草酰乙酸苹果酸

5、氨基酸脱氨基后生成的α-酮酸可以转变成糖及脂类,在体内可以转变成糖的氨基酸称为生糖氨基酸;能转变成酮体者称为生酮氨基酸;二者兼有者称为生糖兼生酮氨基酸。只要记住生酮氨基酸包括:亮、赖;生糖兼生酮氨基酸包括异亮、苏、色、酪、苯丙;其余

为生糖氨基酸。

四、氨基酸的脱羧基作用

1、L-谷氨酸L-谷氨酸脱羧酶γ-氨基丁酸(GABA)GABA为抑制性神经递质。

2、L-半胱氨酸磺酸丙氨酸磺酸丙氨酸脱羧酶牛磺酸牛磺酸是结合型胆汁酸的组成成分。3、L-组氨酸组氨酸脱羧酶组胺

组胺是一种强烈的血管舒张剂,并能增加毛细血管的通透性。

4、色氨酸色氨酸羟化酶5-羟色氨酸5-羟色氨酸脱羧酶5-羟色胺(5-HT)脑内的5-羟色胺可作为神经递质,具有抑制作用;在外周组织,有收缩血管作用。5、L-鸟氨酸鸟氨酸脱羧酶腐胺精脒精胺脱羧基SAM脱羧基SAM精脒与精胺是调节细胞生长的重要物质。合称为多胺类物质。

五、一碳单位

一碳单位来源于组、色、甘、丝,体内的一碳单位有:甲基、甲烯基、甲炔基、甲酰基及亚氨甲基,CO2不属于一碳单位。

四氢叶酸是一碳单位代谢的辅酶。

主要生理功用是作为合成嘌呤及嘧啶的原料。如N10-CHO-FH4与N5,H10=CH-FH4分别提供嘌呤合成时C2与C8的来源;N5,N10-CH2-FH4提供胸苷酸合成时甲基的来源。由此可见,一碳单位将氨基酸与核酸代谢密切联系起来。

六、芳香族氨基酸(色、酪、苯丙)的代谢1、苯丙氨酸苯丙氨酸羟化酶

酪氨酸黑色素细胞的酪氨酸酶多巴酪氨酸羟化酶

多巴黑色素多巴脱羧酶

多巴胺

SAM去甲肾上腺素儿茶酚胺肾上腺素

苯酮酸尿症:当苯丙氨酸羟化酶先天性缺乏时,苯丙氨酸不能转变为酪氨酸,体内苯丙氨酸蓄积,并经转氨基作用生成苯丙酮酸,再进一步转变成苯乙酸等衍生物。此时尿中出现大量苯丙酮酸等代谢产物,称为苯酮酸尿症。

白化病:人体缺乏酪氨酸酶,黑色素合成障碍,皮肤、毛发等发白,称为白化病。2、色氨酸

1)生成5-羟色胺2)生成一碳单位

3)可分解产生尼克酸,这是体内合成维生素的特例。

七、含硫氨基酸(甲硫、半胱、胱)代谢

1、甲硫氨酸S-腺苷甲硫氨酸(SAM)

ATPPPiSAM中的甲基为活性甲基,通过转甲基作用可以生成多种含甲基的重要生理活性物质。SAM是体内最重要的甲基直接供给体。

2、甲硫氨酸循环

甲硫氨酸SAM甲基转移酶S-腺苷同型半胱氨酸RHRCH3

甲硫氨酸合成酶同型半胱氨酸FH4N5-CH3-FH4

N5-CH3-FH4可看成体内甲基的间接供体,甲硫氨酸合成酶辅酶为维生素B12。

3、肌酸的合成肌酸以甘氨酸为骨架,由精氨酸提供脒基,SAM供给甲基而合成。在肌酸激酶催化下,肌酸转变成磷酸肌酸,并储存ATP的高能磷酸键。

4、体内硫酸根主要来源于半胱氨酸,一部分以无机盐形式随尿排出,另一部分则经ATP活化成活性硫酸根,即3"-磷酸腺苷-5"-磷酸硫酸(PAPS)。

八、氨基酸衍生的重要含氮化合物化合物氨基酸前体

嘌呤碱天冬氨酸、谷氨酰胺、甘氨酸嘧啶碱天冬氨酸

血红素、细胞色素甘氨酸

肌酸、磷酸肌酸甘氨酸、精氨酸、蛋氨酸尼克酸色氨酸

儿茶酚胺类苯丙氨酸、酪氨酸甲状腺素酪氨酸

黑色素苯丙氨酸、酪氨酸精胺、精脒蛋氨酸、鸟氨酸

九、尿素的生成

线粒体NH3+CO2+H2O

2*ATP氨基甲酰磷酸合成酶Ⅰ(CSP-Ⅰ)2*ADPN-酰谷氨酸(AGA),Mg++氨基甲酰磷酸Pi胞液鸟氨酸瓜氨酸

ATP瓜氨酸天冬氨酸α-酮戊二酸氨基酸AMPASS

鸟氨酸精氨酸代琥珀酸草酰乙酸谷氨酸α-酮酸尿素

苹果酸精氨酸延胡索酸ASS:精氨酸代琥珀酸合成酶

尿素分子中的2个氮原子,1个来自氨,另1个来自天冬氨酸,而天冬氨酸又可由其他氨基酸通过转氨基作用而生成。

线粒体中以氨为氮源,通过CSP-Ⅰ合成氨甲酰磷酸,并进一步合成尿素;在胞液中以谷氨酰胺为氮源,通过CSP-Ⅱ,催化合成氨基甲酰磷酸,并进一步参与嘧啶的合成。CSP-Ⅰ的活性可用为肝细胞分化程度的指标之一;CSP-Ⅱ的活性可作为细胞增殖程度的指标之一。

氨基甲酰磷酸的生成是尿素合成的重要步骤。AGA是CSP-Ⅰ的变构激动剂,精氨酸是AGA合成酶的激活剂。

第三章核苷酸代谢

一、嘌呤核苷酸代谢

1、合成原料CO2甘氨酸C6N7

天冬氨酸N1C5

甲酰基(一碳单位)C2C4C8甲酰基(一碳单位)N3N9

谷氨酰胺2、合成过程

1)从头合成:

5-磷酸核糖PRPP合成酶磷酸核糖焦磷酸PRPP酰胺转移酶5-磷酸核糖胺ATPAMP(PRPP)

ATPAMP次黄嘌呤核苷酸(IMP)

GTPGMP黄嘌呤核苷酸(XMP)

嘌呤核苷酸是在磷酸核糖分子上逐步合成的,而不是首先单独合成嘌呤碱然后再与磷酸核糖结合而成的。

2)补救合成:

利用体内游离的嘌呤或嘌呤核苷,经过简单的反应过程,合成嘌呤核苷酸。生理意义为:一方面在于可以节省从头合成时能量和一些氨基酸的消耗;另一方面,体内某些组织器官,如脑、骨髓等由于缺乏从头合成的酶体系,只能进行补救合成。

3、脱氧核苷酸的生成

脱氧核苷酸的生成是在二磷酸核苷水平上,由核糖核苷酸还原酶催化,核糖核苷酸C2上的羟基被氢取代生成。

4、分解产物

AMP次黄嘌呤黄嘌呤氧化酶

黄嘌呤黄嘌呤氧化酶尿酸GMP鸟嘌呤

人体内嘌呤碱最终分解生成尿酸,随尿排出体外。痛风症患者血中尿酸含量升高。临床上常用别嘌呤醇治疗痛风症,这是因为别嘌呤醇与次黄嘌呤结构类似,可抑制黄嘌呤氧化酶,从而抑制尿酸的生成。

友情提示:本文中关于《生物化学考试总结》给出的范例仅供您参考拓展思维使用,生物化学考试总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


生物化学考试总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/652113.html
相关阅读
最近更新
推荐专题