公文素材库 首页

数学必修二第一章知识点经典总结版

时间:2019-05-29 13:50:14 网站:公文素材库

数学必修二第一章知识点经典总结版

高一数学必修2知识点

1、圆柱是由矩形旋转得到,圆锥是由直角三角形旋转得到,圆台是由直角梯形旋转得到,球是由半圆旋转得到.

2、中心投影的投影线相交于一点,平行投影的投影线互相平行.3、圆柱的正视图和侧视图都是矩形,俯视图是圆;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆;球的三视图都是圆.4、空间几何体的表面积:

(1)直棱柱的侧面展开图是矩形;设棱柱的高为h,底面多边形的

周长为c,则直棱柱的侧面积S直棱柱侧面积ch;

(2)正棱锥的侧面展开图是全等的等腰三角形;设正棱锥底面正多

边形的边长为a,底面周长为c,斜高为h,则正n棱锥的侧面积S正棱柱侧面积nah"ch";

(3)正棱台的侧面展开图是全等的等腰梯形;设正n棱台的上底面、

下底面边长分别为a、a,对应的周长分别为c、c,斜高为h,则正n棱台的侧面积S正棱台侧面积naahcch

(4)圆柱的侧面展开图是矩形;设圆柱的底面半径为r,母线长为l,

则圆柱的底面面积为r,侧面积为2rl,圆柱的表面积

212121212S圆柱表面积2rrl;

(5)圆锥的侧面展开图是扇形;设圆锥的底面半径为r,母线长为l,

则圆锥的侧面积为rl,表面积S圆锥表面积rrl;

(6)圆台的侧面展开图是扇环;设圆台的两底面半径分别为r、r,

母线长为l,则圆台的侧面积为rrl,表面积

S圆台表面积(r"2r2r"lrl);

(7)设球的半径为R,则球的表面积S表面积4r2.5、空间几何体的体积:

(1)设柱体(棱柱、圆柱)的底面积为S,高为h,则柱体的体积V柱体Sh;(2)设锥体(棱锥、圆锥)的底面积为S,高为h,则锥体的体积

1V锥体3Sh;

(3)设台体(棱台、圆台)的上、下底面积分别为S、S,高为h,则台体的体积V台体hSSSS;

(4)设圆柱的底面半径为r,高为h,则圆柱的体积V圆柱r2h;(5)设圆锥的底面半径为r,高为h,则圆锥的体积V圆锥r2h;(6)设圆台的上、下底面半径分别为r、r,高为h,则圆台的体积

12/2hrrrr;V圆台31313(7)设球的半径为R,则球的体积V球R3.

4

扩展阅读:数学必修二第一章知识点总结+习题

第一章空间几何体

1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。(2)简单组合体的构成形式:

一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体;一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。

简单组合体

练习1.下图是由哪个平面图形旋转得到的()ABCD

2、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDEABCDE或用对角线的端点字母,如五棱柱

"""""AD"

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥PABCDE几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台PABCDE

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

练习2.一个棱柱至少有_____个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱。

3.空间几何体的三视图和直观图

把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。(1)定义:

正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图。几何体的正视图、侧视图和俯视图统称为几何体的三视图。

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”

练习3.有一个几何体的三视图如下图所示,这个几何体应是一个()

A.棱台B.棱锥C.棱柱D.都不对

主视图左视图俯视图

练习4.如图是一个物体的三视图,则此物体的直观图是().

""""""""""

练习5.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;

图(2)中的三视图表示的实物为_____________。

图(1)图(2)

练习6.有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为:

56

22A.24cm,12cmB.15cm,12cmC.24cm,36cm4、空间几何体的直观图(表示空间图形的平面图).观察者站在某一点观察几何体,画出的图形.

斜二测画法的基本步骤:①建立适当直角坐标系xOy(尽可能使更多的点在坐标轴上)②建立斜坐标系x"O"y",使x"O"y"=45(或135),注意它们确定的平面表示水平平面;

00

2222③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X轴,且长度保持

不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y轴,且长度变为原来的一半;

用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

练习7.下列关于用斜二测画法画直观图的说法中,错误的是()...A.用斜二测画法画出的直观图是在平行投影下画出的空间图形B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C.水平放置的矩形的直观图是平行四边形D.水平放置的圆的直观图是椭圆

练习8.如果一个水平放置的图形的斜二测直观图是一个底面为45,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A.20‘

2B.

1222C.D.12225、空间几何体的表面积与体积r

lrlAS侧=2πrlB⑴圆柱侧面积;S侧面2rl⑵圆锥侧面积:S侧面rl

AlVθlr12hlB图中:扇形的半径长为l,圆心角为θ,弧AB的长AB=2πr

圆锥的侧面展开图是扇形,扇形面积S扇形弧长半径Lθl(注:扇形的弧长等于圆心角乘以半径.提醒圆心角π为弧度角,例如60°弧度,3ππ45°弧度,90°弧度等等)42

O1r

hO2Rl⑶圆台侧面积:S侧面rlRl练习9.棱长都是1的三棱锥的表面积为()A.3B.23C.33D.43说明:正三棱锥是锥体中底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。正三棱锥的性质:1.底面是等边三角形。2.侧面是三个全等的等腰三角形。3.顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。6体积公式:

V柱体Sh1V锥体Sh31V台体hS上S上S下S下3

练习10.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:VA.1:3B.1:1C.2:1D.3:1

练习11.在△ABC中,AB2,BC1.5,ABC1200,若使绕直线BC旋转一周,则所形成的几何体的体积是()

A.

9753B.C.D.2222

练习12.半径为R的半圆卷成一个圆锥,则它的体积为()

A.

3355R3B.R3C.R3D.R3248248练习13.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,

EF//AB,EF3,且EF与平面ABCD的距离为2,2EDAFCB则该多面体的体积为()

A.

915B.5C.6D.22练习14.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,

圆台的侧面积为84,则圆台较小底面的半径为()A.7B.6C.5D.37.球的表面积和体积S球4R,V球243R.3练习15.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。练习16.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是()

A.25B.50C.125D.都不对练习17.正方体的内切球和外接球的半径之比为()

A.3:1B.3:2C.2:3D.3:3

练习18(如图)在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积

友情提示:本文中关于《数学必修二第一章知识点经典总结版》给出的范例仅供您参考拓展思维使用,数学必修二第一章知识点经典总结版:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


数学必修二第一章知识点经典总结版
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/705667.html
相关阅读
最近更新
推荐专题