公文素材库 首页

10kV架空配电线路工程设计分析

时间:2019-05-29 15:15:53 网站:公文素材库

10kV架空配电线路工程设计分析

10kV架空配电线路工程设计分析

作者:未知文章来源:本站原创点击数:0更新时间:201*-7-722:34:06【字体:小大】湖北安全生产信息网(安全生产资料大全)寻找资料>>

摘要:该文通过对10kV线路工程设计过程中不同路径方案的技术经济分析,确定沿路架设方案为最优方案。110kV架空配电线路工程设计1.1概述

电力系统主要由发电厂、变电站、输电线路、配电线路及负荷组成。由于电能的产、供、销是同时进行的,因此,10kV配电线路的质量好坏直接影响电力系统的安全、可靠运行,影响供电企业的经济效益。

设计是工程建设的灵魂,工程设计质量的优劣及工程造价是否合理,关系到线路工程建设的经济效益、环境效益、社会效益。一般工程项目的设计分为初步设计及施工图设计两个阶段进行。近几年的配(农)网工程建设与改造中,大多数的10kV架空配电线路为分支线路,工程规模较小,只有几百米到几千米,投资仅为几万元到几十万元,属于小型工程项目,经上级主管部门同意,一般可简化为施工图设计一个阶段进行。1.2设计流程

接受任务,明确线路起点、终点、导线截面;

搜集地形图,根据已掌握资料在图上进行路径方案初选,确定2~3个路径方案;进行现场踏勘、测量,绘制路径图;

根据工程气象条件、线路导线截面、档距、转角及现场地形、地质等实际情况,选用杆塔型式;

根据以上资料开列设备材料清册;

根据设计资料,套用现行定额、计费程序,编制工程预算书;对方案进行技术经济对比分析,确定最佳方案;

对确定的最佳方案进行资料完善、整理,形成全套设计资料。

线路设计中,路径选择是最重要的工作,线路路径一般有多条可供选择的路径,路径短的方案(如起点、终点直线架设)可以节约材料,但路径较长的方案(如沿路架设)可能施工、运行维护较容易,因此,经常需要对各方案进行技术经济分析,确定最优方案。1.3设计资料

近几年,广东电网公司推广实施《广东省10kV配网工程典型设计》(简称《典型设计》),它对统一设计标准、规范设计深度起到了积极的推动作用,在提高工程质量、加快工程建设进度、控制工程造价等方面取得了良好效果。线路工程常用的施工图如铁塔组装图、电杆组装图、部件加工图、铁塔基础施工图等图纸均选用《典型设计》图纸,其他需要设计人员编制的设计资料有路径图、工程

使用杆塔一览图、工程图纸目录(包括选用《典型设计》中的图纸图号)、杆位明细表、设备材料清册、工程设计说明书、预算书及工程造价分析。2普侨区工业线10kV线路工程的设计

为了解决普侨区十山侨四队及侨区工业用电,计划架设一回10kV线路。线路名称:普侨区工业线10kV线路工程。起点:原侨区线路N24号铁塔;终点:十山侨四队;导线:LGJ-120/20。2.1方案设计

下面介绍线路路径方案设计及杆塔选择。2.1.1路径选择

方案1,直线架设。原侨区线路N24号铁塔(起点)至十山侨四队(终点)之间没有什么障碍物,均为水田,考虑两点之间直线距离最近,因此方案1从起点至终点为直线架设,如图1所示。

该方案路径较长,需要材料较多,但施工容易,杆塔无需人力搬运,以后的运行维护也方便。2.1.2杆塔选择

根据配网规划,线路导线采用型号为LGJ-120/20的导线。线路按单回路设计,三角形排列。

本工程气象组合条件属广东省电力设计研究院编制的第四气象区的气象条件,最大风速为30m/s。

根据《典型设计》要求,取导线安全系数K=6。

根据《典型设计》规定,城镇地区配电线路档距一般取40~50m,郊区及农村地区配电线路的档距一般取60~100m,本工程属城镇地区,档距按50m考虑。线路5档左右设置铁塔一基,不仅可起到线路防风作用,同时方便以后分支线路从这些铁塔引出,因此铁塔全部采用转角(终端)型铁塔。

根据普侨区规划,考虑城镇道路建设需要,铁塔选用11m铁塔,水泥电杆选用15m水泥电杆。

根据以上条件,查阅《典型设计》,为减少铁塔型号,只选择一种铁塔,型号为ICS39-11,可满足以上要求。

线路直线段采用水泥电杆,根据以上条件,需选用杆型为Z1-T的电杆。2.2经济分析

以上两个方案各有优缺点,为确定最优方案,下面首先进行工程造价计算。2.2.1工种造价概述工程计价有两种方法,即工程量清单计价及定额计价。按相关规定,全部使用国有资金投资或国有资金投资为主的大中型和需招标的小型建设工程,应执行工程量清单计价。本工程为国有投资项目,需要招投标,因此采用工程量清单计价。工程量清单计价总价包括分部分项工程费、措施项目费、其他项目费、规费、税金。

建设工程计价采用统一格式,工程量清单计价包括以下统一标准格式:封面、总价、单位工程费汇总表、分部分项工程量清单计价表、措施项目清单计价表、其他项目清单计价表、零星工作项目计价表、分部分项工程量清单综合单价分析表、措施项目费分析表、规费计算表、设备材料价格表。工程造价计算依据包括以下几个方面:工程量:依据设计图纸、设计说明等设计资料;

定额:依据201*年《广东省安装工程计价办法》、201*年《广东省安装工程综合定额》等;

取费:参照广东省电力建设定额粤电定[201*]17号文,按三类地区、二类工程计取费率;

设备材料价格:参照以往招标价格及信息价。2.2.2方案1造价

对工程量进行测算,得各分部分项工程数量清单,如表1所示。

由表7可知,方案1的分部分项工程数量虽然较少,但由于施工难度大,综合单价较高,特别是铁塔综合单价比方案2高得多,使方案1造价较高。2.3方案确定

技术上,两个方案均能满足从起点到终点的送电要求,但方案2(沿路架设)投资较低,施工、运行维护较容易,故选择方案2(沿路架设)为最优方案。3结束语

通过以上对比分析,在线路工程设计中,路径确定是关键,路径的确定应根据施工地形、地质及施工难易等因素进行综合考虑,对设计方案进行技术经济分析,确定技术上满足要求、费用最低的设计方案为最优设计方案。参考文献

[1]SDJ206-87.架空配电线路设计技术规程.

[2]广东省10kV配网工程典型设计.广东电网公司,201*.[3]广东省安装工程计价办法.201*.

[4]广东省安装工程综合定额.广东省建设厅,201*.

扩展阅读:10kV及以下架空配电线路设计技术规程DL

10kV及以下架空配电线路设计技术规程DL/T5220201*中华人民共和国电力行业标准10kV及以下架空配电线路设计技术规程

Codefordesigningover-headdistributiontransmissionlineupto10kVDL/T5220201*

中华人民共和国国家发展和改革委员会发布

前言

本标准是根据原国家经贸委《关于下达201*年度电力行业标准制、修订计划项目的通知》(国经贸电力[201*]70号)的安排,对原水利电力部1987年1月颁发的SDJ206--1987《架空配电线路设计技术规程》进行的修订。

本标准较修订前的规程有以下重要技术内容的改变:

(1)本标准将范围明确为10kV及以下架空电力线路设计,以满足城市和农村供电的要求。(2)为满足城市电网供电的可靠性及电能质量日益提高的要求,1990年以后在我国大中城市配电线路建设中逐步采用架空绝缘导线。故本次修订增加了10kV及以下绝缘导线设计的有关内容。

(3)对交叉跨越提出了补充,补充了典型气象区。

(4)原规程中某些不适合当前生产要求的章节条款,已予删除或修改。本标准实施后代替SDJ206--1987。

本标准的附录A、附录B、附录C、附录D均为规范性附录。本标准由中国电力企业联合会提出。

本标准由电力行业电力规划设计标准化技术委员会归口并负责解释。本标准主要起草单位:天津电力设计院。

本标准参加起草单位:北京供电设计院、武汉供电设计院、南京电力设计研究院。本标准主要起草人:李世森、程景春、许宝颐、刘寅初、王秀岩、刘纲、王学仑。1范围

1.0.1本标准规定了10kv及以下交流架空配电线路(以下简称配电线路)的设计原则。1.0.2本标准适用于10kV及以下交流架空配电线路的设计。

2规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。

GB/T1179圆线同心绞架空导线

GBl2527额定电压lkV及以下架空绝缘电缆

GBl4049额定电压10kV、35kV架空绝缘电缆

GB/T16434高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准GB500603一110kV高压配电装置设计规范GB5006166kV及以下架空电力线路设计规范DL/T765.1架空配电线路金具技术条件DL/T5092110kV~500kV架空送电线路设计技术规程DL/T5130架空送电线路钢管杆设计技术规定JTJ001公路工程技术标准3术语和符号3.1术语

3.1.1

平均运行张力everydaytension

导线在年平均气温计算情况下的弧垂最低点张力。3.1.2

钢筋混凝土杆reinforcedconcretepole

普通钢筋混凝土杆、部分预应力混凝土杆及预应力钢筋混凝土杆的统称。3.1.3

居民区residentialarea

堀镇、工业企业地区、港口、码头、车站等人口密集区。3.1.4

非居民区nomresidentialarea

上述居民区以外的地区。虽然时常有人、有车辆或农业机械到达,但未建房屋或房屋稀少。3.1.5

交通困难地区difficulttransportarea车辆、农业机械不能到达的地区。3.1.6

大档距Iargedistance

配电线路由于档距已超出正常范围,引起杆塔结构型式、导线型号均需特殊设计,且该档距中发生故障时,修复特别困难的耐张段(如线路跨越通航大河流、湖泊、山谷等)。3.2符号

Wx导线风荷载标准值,kN。Wo基准风压标准值,KN/m2。μs风荷载体型系数。μz风压高度变化系数。β风振系数。α风荷载档距系数。Lw水平档距,m。

4总则

4.0.1配电线路的设计必须贯彻国家的建设方针和技术经济政策,做到安全可靠、经济适用。4.0.2配电线路设计必须从实际出发,结合地区特点,积极慎重地采用新材料、新工艺、新技术、新设备。

4.0.3主干配电线路的导线布置和杆塔结构等设计,应考虑便于带电作业。

4.0.4配电线路大档距的设计,应符合DL/5092的规定。4.0.5配电线路的设计,除应按本标准规定执行外,还应符合现行国家标准和有关电力行业标准的规定。5路径

5.0.1配电线路路径的选择,应认真进行调查研究,综合考虑运行、施工、交通条件和路径长度等因素,统筹兼顾,全面安排,做到经济合理、安全适用。

5.0.2配电线路的路径,应与城镇总体规划相结合,与各种管线和其他市政设施协调,线路杆塔位置应与城镇环境美化相适应。

5.0.3配电线路路径和杆位的选择应避开低洼地、易冲刷地带和影响线路安全运行的其他地段。

5.0.4乡镇地区配电线路路径应与道路、河道、灌渠相协调,不占或少占农田。

5.0.5配电线路应避开储存易燃、易爆物的仓库区域,配电线路与有火灾危险性的生产厂房和库房、易燃易爆材料场以及可燃或易燃、易爆液(气)体储罐的防火间距不应小于杆塔高度的1.5倍。

6气象条件

6.0.1配电线路设计所采用的气象条件,应根据当地的气象资料和附近已有线路的运行经验确定。如当地气象资料与附录A典型气象区接近,宜采用典型气象区所列数值。6.0.2配电线路的最大设计风速值,应采用离地面l0m高处,10年一遇lOmin平均最大值。如无可靠资料,在空旷平坦地区不应小于25m/s,在山区宜采用刚近干坦地区风速的1.1倍且不应小于25m/s。

6.0.3配电线路通过市区或森林等地区,如两侧屏蔽物的平均高度大于杆塔高度的2/3,其最大设计风速宜比当地最大设计风速减少20%。

6.0.4配电线路邻近城市高层建筑周围,其迎风地段风速值应较其他地段适当增加,如无可靠资料时,一般应按附近平地风速增加20%。

6.0.5配电线路设计采用的年平均气温应按下列方法确定:

(1)当地区的年平均气温在3℃一17℃之间时,年平均气温应取与此数较邻近的5的倍数值。(2)当地区的年平均气温小于3℃或大于17℃时,应将年平均气温减少3℃~5℃后,取与此数邻近的5的倍数值。

6.0.6配电线路设计采用导线的覆冰厚度,应根据附近已有线路运行经验确定,导线覆冰厚度宜取5mm的倍数。7导线7.0.1配电线路应采用多股绞合导线,其技术性能应符合GB/T1179、GB14049、GB12527等规定。

7.0.2钢芯铝绞线及其他复合导线,应按最大使用张力或平均运行张力进行计算。7.0.3风向与线路垂直情况导线风荷载的标准值应按下式计算:7.0.4城镇配电线路,遇下列情况应采用架空绝缘导线:l线路走廊狭窄的地段。2高层建筑邻近地段。

3繁华街道或人口密集地区。4游览区和绿化区。5空气严重污秽地段。

6建筑施工现场。

7.0.5导线的设计安全系数,不应小于表7.0.5所列数值。

7.0.6配电线路导线截面的确定应符合下列规定:

1结合地区配电网发展规划和对导线截面确定,每个地区的导线规格宜采用3~4种。无配电网规划地区不宜小于表7.0.6所列数值。2采用允许电压降校核时:

1)lkVlOkV配电线路,自供电的变电所二次侧出口至线路末端变压器或末端受电变电所一次侧入口的允许电压降为供电变电所二次侧额定电压的5%。

2)lkV以下配电线路,自配电变压器二次侧出口至线路末端(不包括接户线)的允许电压降为额定电压的4%。

7.0.7校验导线载流量时,裸导线与聚乙烯、聚氯乙烯绝缘导线的允许温度采用+70℃,交联聚乙烯绝缘导线的允许温度采用+90℃。

7.0.8lkV以下三相四线制的零线截面,应与相线截面相同。7.0.9导线的连接,应符合下列规定:

1不同金属、不同规格、不同绞向的导线,严禁在档距内连接。2在一个档距内,每根导线不应超过一个连接头。

3档距内接头距导线的固定点的距离,不应小于0.5m。4钢芯铝绞线,铝绞线在档距内的连接,宜采用钳压方法。5铜绞线在档距内的连接,宜采用插接或钳压方法。

6铜绞线与铝绞线的跳线连接,宜采用铜铝过渡线夹、铜铝过渡线。7铜绞线、铝绞线的跳线连接,宜采用线夹、钳压连接方法。

7.0.10导线连接点的电阻,不应大于等长导线的电阻。档距内连接点的机械强度,不应小于导线计算拉断力的95%。

7.0.11导线的弧垂应根据计算确定。导线架设后塑性伸长对弧垂的影响,宜采用减小弧垂法补偿,弧垂减小的百分数为:1铝绞线、铝芯绝缘线为20%。2钢芯铝绞线为12%。

3铜绞线、铜芯绝缘线为7%~8%。

7.0.12配电线路的铝绞线、钢芯铝绞线,在与绝缘子或金具接触处,应缠绕铝包带。8绝缘子、金具

8.0.1配电线路绝缘子的性能,应符合现行国家标准各类杆型所采用的绝缘子,且应符合下列规定:

1lkV~10kV配电线路:

1)直线杆采用针式绝缘子或瓷横担。

2)耐张杆宜采用两个悬式绝缘子组成的绝缘子串或一个悬式绝缘子和一个蝴蝶式绝缘子组成的绝缘子串。

3)结合地区运行经验采用有机复合绝缘子。2lkV以下配电线路:

1)直线杆宜采用低压针式绝缘子。

2)耐张杆应采用一个悬式绝缘子或蝴蝶式绝缘子。

8.0.2在空气污秽地区,配电线路的电瓷外绝缘应根据地区运行经验和所处地段外绝缘污秽等级,增加绝缘的泄漏距离或采取其他防污措施。如无运行经验,应符合附录B所规定的数值。

8.0.3绝缘子和金具的机械强度应按式(8.0.3)验算:KF8.0.5配电线路采用钢制金具应热镀锌,且应符合DL/T765.1的技术规定。

9导线排列

9.0.1lkV~10kV配电线路的导线应采用三角排列、水平排列、垂直排列。lkV以下配电线路的导线宜采用水平排列。城镇的lkV~lOkV配电线路和lkV以下配电线路宜同杆架设,且应是同一电源并应有明显的标志。

9.0.2同一地区lkV以下配电线路的导线在电杆上的排列应统一。零线应靠近电杆或靠近建筑物侧。同一回路的零线,不应高于相线。

9.0.3lkV以下路灯线在电杆上的位置,不应高于其他相线和零线。

9.0.4配电线路的档距,宜采用表9.0.4所列数值。耐张段的长度不应大于lkm。

9.0.5沿建(构)筑物架设的lkV以下配电线路应采用绝缘线,导线支持点之间的距离不宜大于15m。

9.0.6配电线路导线的线间距离,应结合地区运行经验确定。如无可靠资料,导线的线间距离不应小于表9.0.6所列数值。

9.0.7同电压等级同杆架设的双回线路或lkV~10kV、lkV以下同杆架设的线路、横担间的垂直距离不应小于表9.0.7所列数值。

9.0.8同电压等级同杆架设的双回绝缘线路或IkV~IOkV、lkV以下同杆架设的绝缘线路、横担问的垂直距离不应小于表9.0.8所列数值。

9.0.91kV~10kV配电线路与35kV线路同杆架设时,两线路导线间的垂直距离不应小于2.Om。1kV~10kV配电线路与66kV线路同杆架设时,两线路导线间的垂直距离不宜小于3.5m,当lkV~10kV配电线路采用绝缘导线时,垂直距离不应小于3.Om。9.0.10lkV~lOkV配电线路架设在同一横担上的导线,其截面差不宜大于三级。

9.0.11配电线路每相的过引线、引下线与邻相的过引线、引下线或导线之间的净空距离,不应小于下列数值:

llkV~10kV为0.3m。2lkV以下为O.15m。

3lkV~lOkV引下线与lkV以下的配电线路导线间距离不应小于0.2m。

9.0.12配电线路的导线与拉线、电杆或构架间的净空距离,不应小于下列数值:11kV~10kV为0.2m。2lkV以下为0.1m。10电杆、拉线和基础

10.0.1杆塔结构构件及其连接的承载力(强度和稳定)计算,应采用荷载设计值:变形、抗裂、裂缝、地基和基础稳定计算,均应采用荷载标准值。

10.0.2杆塔结构构件的承载力的设计采用的极限状态设计表达式和杆塔结构式的变形、裂缝、抗裂计算采用的正常使用极限状态设计表达式,应按GB50061的规定设计。型钢、混凝土、钢筋的强度设计值和标准值,应按GB50061的规定设计。10.0.3各型电杆应按下列荷载条件进行计算:1最大风速、无冰、未断线。

2覆冰、相应风速、未断线。

3最低气温、无冰、无风、未断线(适用于转角杆和终端杆)。10.0.4各杆塔均应按以下3种风向计算杆身、导线的风荷载:1风向与线路方向相垂直(转角杆应按转角等分线方向)。

2风向与线路方向的夹角成60°或45°。3风向与线路方向相同。

10.0.5风向与线路方向在各种角度情况下,杆塔、导线的风荷载,其垂直线路方向分皿和顺线路方向分量,应符合GB50061的规定。

10.0.6杆塔的风振系数β,当杆塔高度为30m以下时取1.0。10.0.7风荷载档距系数α,应按下列规定取值:1风速20m/s以下,α=1.0。2风速(20~29)m/s,α=0.85。3风速(30~34)m/s,α=0.75。4风速35m/s及以上,α=0.7。

10.0.8配电线路的钢筋混凝土电杆,应采用定型产品。电杆构造的要求应符合现行国家标准。

10.0.9配电线路采用的横担应按受力情况进行强度计算,选用应规格化。采用钢材横担时,其规格不应小于:∠63mm×∠63mm×6mm。钢材的横担及附件应热镀锌。10.0.10拉线应根据电杆的受力情况装设。拉线与电杆的夹角宜采用45°。当受地形限制可适当减小,且不应小于30°。

10.0.11跨越道路的水平拉线,对路边缘的垂直距离,不应小于6m。拉线柱的倾斜角宜采用10°~20°。跨越电车行车线的水平拉线,对路面的垂直距离,不应小于9m。10.0.12拉线应采用镀锌钢绞线,其截面应按受力情况计算确定,且不应小于25mm2。10.0.13空旷地区配电线路连续直线杆超过10基时,宜装设防风拉线。

10.0.14钢筋混凝土电杆,当设置拉线绝缘子时,在断拉线情况下拉线绝缘子距地面处不应小于2.5m,地面范围的拉线应设置保护套。

10.0.15拉线棒的直径应根据计算确定,且不应小于16mm。拉线棒应热镀锌。腐蚀地区拉线棒直径应适当加大2mm~4mm或采取其他有效的防腐措施。

10.0.16电杆基础应结合当地的运行经验、材料来源、地质情况等条件进行设计。

10.0.17电杆埋设深度应计算确定。单回路的配电线路电杆埋设深度宜采用表10.0.17所列数值。

10.0.18多回路的配电线路验算电杆基础底面压应力、抗拔稳定、倾覆稳定时,应符合GB50061的规定。

10.0.19现浇基础的混凝土强度不宜低于C15级,预制基础的混凝土强度等级不宜低于C20级。

10.0.20采用岩石制做的底盘、卡盘、拉线盘应选择结构完整、质地坚硬的石料(如花岗岩等),且应进行试验和鉴定。

10.0.21配电线路采用钢管杆时,应结合当地实际情况选定。钢管杆的基础型式、基础的倾覆稳定应符合DL/T5130的规定。

11变压器台和开关设备

11.0.1配电变压器台的设置,其位置应在负荷中心或附近便于更换和检修设备的地段。11.0.2下列类型的电杆不宜装设变压器台:1转角、分支电杆。

2设有接户线或电缆头的电杆。3设有线路开关设备的电杆。4交叉路口的电杆。5低压接户线较多的电杆。

6人员易于触及或人员密集地段的电杆。7有严重污秽地段的电杆。

11.0.3400kVA及以下的变压器,宜采用柱上式变压器台。400kVA以上的变压器,宜采用室内装置。当采用箱式变压器或落地式变台时,应综合考虑使用性质、周围环境等条件。11.0.4柱上式变压器台底部距地面高度,不应小于2.5m。其带电部分,应综合考虑周围环境等条件。

落地式变压器台应装设固定围栏,围栏与带电部分间的安全净距,应符合GB50060的规定。11.0.5变压器台的引下线、引上线和母线应采用多股铜芯绝缘线,其截面应按变压器额定电流选择,且不应小于16mm2。变压器的一、二次侧应装设相适应的电气设备。一次侧熔断器装设的对地垂直距离不应小于4.5m,二次侧熔断器或断路器装设的对地垂直距离不应小于3.5m。各相熔断器水平距离:一次侧不应小于0.5m,二次侧不应小于0.3m。11.0.6配电变压器应选用节能系列变压器,其性能应符合现行国家标准。

11.0.7一、二次侧熔断器或隔离开关、低压断路器,应优先选用少维护的符合国家标准的定型产品,并应与负荷电流、导线最大允许电流、运行电压等相配合。11.0.8配电变压器熔丝的选择宜按下列要求进行:

I容量在100kVA及以下者,高压侧熔丝按变压器额定电流的23倍选择。2容量在100kVA及以上者,高压侧熔丝按变压器额定电流的1.5~2倍选择。3变压器低压侧熔丝(片)或断路器长延时整定值按变压器额定电流选择。

4繁华地段,居民密集区域宜设置单相接地保护。

11.0.9lkV~10kV配电线路较长的主干线或分支线应装设分段或分支开关设备。环形供电网络应装设联络开关设备。lkV~10kV配电线路在线路的管区分界处宜装设开关设备。12防雷和接地

12.0.1无避雷线的lkV~10kV配电线路,在居民区的钢筋混凝土电杆宜接地,金属管杆应接地,接地电阻均不宜超过30Ω。

中性点直接接地的lkV以下配电线路和10kV及以下共杆的电力线路,其钢筋混凝土电杆的铁横担或金屈杆,应与零线连接,钢筋混凝土电杆的钢筋宜与零线连接。

中性点非直接接地的lkV以下配电线路,其钢筋混凝土电杆宜接地,金属杆应接地,接地电阻不宜大于50Ω。

沥青路面上的或有运行经验地区的钢筋混凝土电杆和金属杆,可不另设人工接地装置,钢筋混凝土电杆的钢筋、铁横担和金属杆也可不与零线连接。

12.0.2有避雷线的配电线路,其接地装置在雷雨季节干燥时间的工频接地电阻不宜大于表12.0.2所列的数值。

12.0.3柱上断路器应设防雷装置。经常开路运行而又带电的柱上断路器或隔离开关的两侧,均应设防雷装置,其接地线与柱上断路器等金属外壳应连接并接地,且接地电阻不应大于10Ω。

12.0.4配电变压器的防雷装置应结合地区运行经验确定。防雷装置位置,应尽量靠近变压器,其接地线应与变压器二次侧中性点以及金属外壳相连并接地。

12.0.5多雷区,为防止雷电波或低压侧雷电波击穿配电变压器高压侧的绝缘,宜在低压侧装设避雷器或击穿熔断器。如低压侧中性点不接地,应在低压侧中性点装设击穿熔断器。12.0.61kV~10kV配电线路,当采用绝缘导线时宜有防雷措施,防雷措施应根据当地雷电活动情况和实际运行经验确定。

12.0.7为防止雷电波沿lkV以下配电线路侵入建筑物,接户线上的绝缘子铁脚宜接地,其接地电阻不宜大于30Ω。

年平均雷暴日数不超过30日/年的地区和lkV以下配电线被建筑物屏蔽的地区以及接产线与lkV以下干线接地点的距离不大于50m的地方,绝缘子铁脚可不接地。

如lkV以下配电线路的钢筋混凝土电杆的自然接地电阻不大于30Ω,可不另设接地装置。12.0.8中性点直接接地的lkV以下配电线路中的零线,应在电源点接地。在干线和分干线终端处,应重复接地。

lkV以下配电线路在引入大型建筑物处,如距接地点超过50m,应将零线重复接地。12.0.9总容量为100kVA以上的变压器,其接地装置的接地电阻不应大于4Ω,每个重复接地装置的接地电阻不应大于10Ω。

总容量为100kVA及以下的变压器,其接地装置的接地电阻不应大于lOΩ,每个重复接地装置的接地电阻不应大于30Ω,且重复接地不应少于3处。

12.0.10悬挂架空绝缘导线的悬挂线两端应接地,其接地电阻不应大于30Ω。

12.0.111kV~10kV绝缘导线的配电线路在干线与分支线处、干线分段线路处宜装有接地线挂环及故障显示器。

12.0.12配电线路通过耕地时,接地体应埋设在耕作深度以下,且不宜小于0.6m。12.0.13接地体宜采用垂直敷设的角钢、圆钢、钢管或水平敷设的圆钢、扁钢。接地体和埋入土壤内接地线的规格,不应小于表12.0.13所列数值。13对地距离及交叉跨越

13.0.1导线对地面、建筑物、树木、铁路、道路、河流、管道、索道及各种架空线路的距离,应根据最高气温情况或覆冰情况求得的最大弧垂和最大风速情况或覆冰情况求得的最大风偏计算。

计算上述距离,不应考虑由于电流、太阳辐射以及覆冰不均匀等引起的弧垂增大,但应计及导线架线后塑性伸长的影响和设计施工的误差。

13.0.2导线与地面或水面的距离,不应小于表13.0.2数值。

13.0.3导线与山坡、峭壁、岩石地段之间的净空距离,在最大计算风偏情况下,不应小于表13.0.3所列数值。

13.0.4lkV~lOkV配电线路不应跨越屋顶为易燃材料做成的建筑物,对耐火屋顶的建筑物,应尽量不跨越,如需跨越,导线与建筑物的垂直距离在最大计算弧垂情况下,裸导线不应小于3m,绝缘导线不应小于2.5m。

lkV以下配电线路跨越建筑物,导线与建筑物的垂直距离在最大计算弧垂情况下,裸导线不应小于2.5m,绝缘导线不应小于2m。

线路边线与永久建筑物之间的距离在最大风偏情况下,不应小于下列数值:lkV~lOkV:裸导线1.5m,绝缘导线0.75m。(相邻建筑物无门窗或实墙)

lkV以下:裸导线lm,绝缘导线0.2m。(相邻建筑物无门窗或实墙)在无风情况下,导线与不在规划范围内城市建筑物之间的水平距离,不应小于上述数值的一半。

注1:导线与城市多层建筑物或规划建筑线间的距离,指水平距离。注2:导线与不在规划范围内的城市建筑物间的距离,指净空距离。

13.0.5lkV~lOkV配电线路通过林区应砍伐出通道,通道净宽度为导线边线向外侧水平延伸5m,绝缘线为3m,当采用绝缘导线时不应小于lm。在下列情况下,如不妨碍架线施工,可不砍伐通道:1树木自然生长高度不超过2m。

2导线与树木(考虑自然生长高度)之间的垂直距离,不小于3m。配电线路通过公园、绿化区和防护林带,导线与树木的净空距离在最大风偏情况下不应小于3m。

配电线路通过果林、经济作物以及城市灌木林,不应砍伐通道,但导线至树梢的距离不应小于1.5m。

配电线路的导线与街道行道树之间的距离,不应小于表13.0.5所列数值。

校验导线与树木之间的垂直距离,应考虑树木在修剪周期内生长的高度。

13.0.6lkV~lOkV线路与特殊管道交叉时,应避开管道的检查井或检查孔,同时,交叉处管道上所有金属部件应接地。

13.0.7配电线路与甲类厂房、库房,易燃材料堆场,甲、乙类液体贮罐,液化石油气贮罐,可燃、助燃气体贮罐最近水平距离,不应小于杆塔高度的1.5倍,丙类液体贮罐不应小于1.2倍。

13.0.8配电线路与弱电线路交叉,应符合下列要求:

1交叉角应符合表13.0.8的要求。2配电线路一般架在弱电线路上方。配电线路的电杆,应尽量接近交叉点,但不宜小于7m(城区的线路,不受7m的限制)。

13.0.9配电线路与铁路、道路、河流、管道、索道、人行天桥及各种架空线路交叉或接近,应符合表13.0.9的要求。14接户线

14.0.1接产线是指10kV及以下配电线路与用户建筑物外第一支持点之间的架空导线。14.0.2lkV~lOkV接户线的档距不宜大于40m。档距超过40m时,应按lkV~10kV配电线路设计。lkV以下接户线的档距不宜大于25m,超过25m时宜设接户杆。14.0.3接户线应选用绝缘导线,lkVlOkV接户线其截面不应小于下列数值:铜芯绝缘导线为25mm2:铝芯绝缘导线为35mm2。

lkV以下接户线的导线截面应根据允许载流量选择,且不应小于下列数值:铜芯绝缘导线为lOmm2;铝芯绝缘导线为16mm2。

14.0.4lkVlOkV接产线,线间距离不应小于0.40m。lkV以下接户线的线间距离,不应小于表14.0.4所列数值。lkV以下接户线的零线和相线交叉处,应保持一定的距离或采取加强绝缘措施。

14.0.5接户线受电端的对地面垂直距离,不应小于下列数值:lkV~10kV为4m:

lkV以下为2.5m。

14.0.6跨越街道的lkV以下接户线,至路面中心的垂直距离,不应小于下列数值:有汽车通过的街道为6m:

汽车通过困难的街道、人行道为3.5m:胡同(里、弄、巷)为3m;

沿墙敷设对地面垂直距离为2.5m。

14.0.7lkV以下接尸线与建筑物有关部分的距离,不应小于下列数值:与接户线下方窗户的垂直距离为0.3m:

与接户线上方阳台或窗户的垂直距离为0.8m:

与窗户或阳台的水平距离为0.75m;与墙壁、构架的距离为O.05m。

14.0.8lkV以下接尸线与弱电线路的交叉距离,不应小于下列数值:在弱电线路的上方为0.6m;

在弱电线路的下方为0.3m。

如不能满足上述要求,应采取隔离措施。

14.0.91kV~10kV接户线与各种管线的交叉,应符合表13.0.8和表13.0.9的规定。14.0.10lkV以下接尸线不应从高压引下线间穿过,严禁跨越铁路。

14.0.11不同金属、不同规格的接户线,不应在档距内连接。跨越有汽车通过的街道的接户线,不应有接头。

14.0.12接户线与线路导线若为铜铝连接,应有可靠的过渡措施。14.0.13各栋门之前的接户线若采用沿墙敷设时,应有保护措施。附录(规范性附录)弱电线路等级

1一级线路

首都与各省(直辖市)、自治区所在地及其相互间联系的主要线路:首都至各重要工矿城市、海港的线路以及由首都通达国外的国际线路:由邮电部门指定的其他国际线路和国防线路;铁道部与各铁路局及各铁路局之间联系用的线路,以及铁路信号自动闭塞装置专用线路。2二级线路

各省(直辖市)、自治区所在地与各地(市)、县及其相互间的通信线路;相邻两省(自治区)各地(市)、县相互间的通信线路;一般市内电话线路:铁路局与各站、段及站段相互间的线路,以及铁路信号闭塞装置的线路。3三级线路

县至区、乡的县内线路和两对以下的缄郊线路;铁路的地区线路及有线广播线路。附录

(规范性附录)公路等级

1高速公路为专供汽车分向、分车道行驶并全部控制出入的干线公路

四车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为25000~55000辆。

六车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为45000~80000辆。

八车道高速公路一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为60000100000辆。

2一级公路为供汽车分向、分车道行驶的公路

一般能适应按各种汽车折合成小客车的远景设计年限年平均昼夜交通量为15000~30000辐。为连接重要政治、经济中心,通往重点工矿区、港口、机场,专供汽车分道行驶并部分控制出入的公路。3二级公路

一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为3000~15000辆,为连接重要政治、经济中心,通往重点工矿、港口、机场等的公路。

4三级公路

一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为1000~4000辆,为沟通县以上堀市的公路。5四级公路

一般能适应按各种车辆折合成中型载重汽车的远景设计年限年平均昼夜交通量为:双车道1500辆以下:单车道200辆以下,为沟通县、乡(镇)、村等的公路。

友情提示:本文中关于《10kV架空配电线路工程设计分析》给出的范例仅供您参考拓展思维使用,10kV架空配电线路工程设计分析:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


10kV架空配电线路工程设计分析
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/712561.html
相关阅读
最近更新
推荐专题