八年级(人教版)一次函数知识点总结
八年级数学一次函数知识点总结基本概念
1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______.在圆的周长公式C=2πr中,变量是________,常量是_________.
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:
(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b(3)走向:
(4)增减性:k>0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;
当b0b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k12、正比例函数与一次函数图象之间的关系
一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b0或ax+b
扩展阅读:初中八年级(人教版)一次函数知识点总结
B-L-S
八年级数学上册一次函数知识点总结
一、本节学习指导
本节的知识相当重要,同学们要引起重视,如果给出一个式子让其判断是不是一次函数,判断方法我们要掌握。关于一次函数的解析式的几种求法我们要会,特别是其中最常用的“待定系数法”。本节有配套免费学习视频。
二、知识要点
1、一次函数:形如y=kx+b(k≠0,k,b为常数)的函数。
注意:(1)要使y=kx+b是一次函数,必须k≠0。如果k=0,则kx=0,y=kx+b就不是一次函数;
(2)当b=0时,y=kx,y叫x的正比例函数。2、图象:一次函数的图象是一条直线。【重点】
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-b/k,0)
(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5
都与直线y=2x平行。3、性质:【重点】(1)图象的位置:
(2)增减性
k>0时,y随x增大而增大
kB-L-S
4.求一次函数解析式的方法【重点】(1)由已知函数推导或推证
(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。(3)用待定系数法求函数解析式。(最常用)
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义
x的系数不为0,x的最高次数为1,构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。例:
(1)若函数是y(k1)xk21正比例函数,则k的值为()(2)已知y(2m1)xm23是正比例函数,且y随x的增大而减小,则m的值为_______.
(3)当m=_______时,函数y(m3)x2m14x5是一次函数.解:
(1)由于y=(k+1)x+k-1是正比例函数,∴
,∴k=1,∴应选B.
(2)是正比例函数的条件是:m2-3=1且2m-1≠0,要使y随x的
增大而减小还应满足条件2m-1B-L-S
解得m=1或-3,故填1或-3.
三、经验之谈:
1、判断一个式子是不是一次函数,首先看“k”是否等于零,其次看最高次项是否等于1次。
2、给出一个一次函数,我们要能迅速的画出图像,一看朝向,如果k>0,图像“向上爬”,k<0,图像“向下滑”;二看截距,截距就是|b|,如果b>0,图像和y轴的焦点在y的正半轴,如果b<0,则在y的负半轴。
3、一次函数的增减性很简单,当函数图像“向上爬”时,y随x的增大而增大;当函数图象“向下滑”时,y随x的增大而减小。
友情提示:本文中关于《八年级(人教版)一次函数知识点总结》给出的范例仅供您参考拓展思维使用,八年级(人教版)一次函数知识点总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《八年级(人教版)一次函数知识点总结》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/714180.html
- 上一篇:初二数学一次函数知识点总结
- 下一篇:一次函数知识点总结