公文素材库 首页

高中数学选修2-2知识点总结

时间:2019-05-27 19:29:49 网站:公文素材库

高中数学选修2-2知识点总结

导数及其应用

一.导数概念的引入

数学选修2-2知识点总结

1.导数的物理意义:瞬时速率。一般的,函数yf(x)在xx0处的瞬时变化率是

limf(x0x)f(x0)x,

x0我们称它为函数yf(x)在xx0处的导数,记作f(x0)或y|xx,即

0f(x0)=limf(x0x)f(x0)xx0

例1.在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:

s)存在函数关系

h(t)4.9t6.5t10

2运动员在t=2s时的瞬时速度是多少?解:根据定义

vh(2)limh(2x)h(2)xx013.1

即该运动员在t=2s是13.1m/s,符号说明方向向下

2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点Pn趋近于P时,直线PT与

曲线相切。容易知道,割线PPn的斜率是knf(xn)f(x0)xnx0,当点Pn趋近于P时,函

数yf(x)在xx0处的导数就是切线PT的斜率k,即

klimf(xn)f(x0)xnx0f(x0)

x03.导函数:当x变化时,f(x)便是x的一个函数,我们称它为f(x)的导函数.yf(x)的导函数有时也记作y,即

f(x)limf(xx)f(x)xx0

二.导数的计算

1.函数yf(x)c的导数2.函数yf(x)x的导数3.函数yf(x)x的导数

4.函数yf(x)1x的导数

基本初等函数的导数公式:

1若f(x)c(c为常数),则f(x)0;2若f(x)x,则f(x)x1;3若f(x)sinx,则f(x)cosx4若f(x)cosx,则f(x)sinx;5若f(x)ax,则f(x)axlna6若f(x)ex,则f(x)ex

x7若f(x)loga,则f(x)1xlna1x

8若f(x)lnx,则f(x)导数的运算法则

1.[f(x)g(x)]f(x)g(x)

2.[f(x)g(x)]f(x)g(x)f(x)g(x)

f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

复合函数求导

yf(u)和ug(x),称则y可以表示成为x的函数,即yf(g(x))为一个复合函数yf(g(x))g(x)

三.导数在研究函数中的应用1.函数的单调性与导数:

一般的,函数的单调性与其导数的正负有如下关系:

在某个区间(a,b)内,如果f(x)0,那么函数yf(x)在这个区间单调递增;如果f(x)0,那么函数yf(x)在这个区间单调递减.2.函数的极值与导数

极值反映的是函数在某一点附近的大小情况.求函数yf(x)的极值的方法是:

(1)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值;(2)如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值;4.函数的最大(小)值与导数

函数极大值与最大值之间的关系.

求函数yf(x)在[a,b]上的最大值与最小值的步骤(1)求函数yf(x)在(a,b)内的极值;

(2)将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是一个

最大值,最小的是最小值.

四.生活中的优化问题

利用导数的知识,,求函数的最大(小)值,从而解决实际问题

第二章推理与证明

考点一合情推理与类比推理

根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.

类比推理的一般步骤:

(1)找出两类事物的相似性或一致性;

(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);

(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某

些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.

(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比

得出的命题越可靠.

考点二演绎推理(俗称三段论)

由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.

考点三数学归纳法

1.它是一个递推的数学论证方法.

2.步骤:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立C.证明n=k+1时命题也成立,

完成这两步,就可以断定对任何自然数(或n>=n0,且nN)结论都成立。考点三证明1.反证法:2.分析法:3.综合法:

第一章数系的扩充和复数的概念考点一:复数的概念

(1)复数:形如abi(aR,bR)的数叫做复数,a和b分别叫它的实部和虚部.

(2)分类:复数abi(aR,bR)中,当b0,就是实数;b0,叫做虚数;当a0,b0时,

叫做纯虚数.

(3)复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.

(4)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.(5)复平面:建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部

分叫做虚轴。

(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

考点二:复数的运算

1.复数的加,减,乘,除按以下法则进行设z1abi,z2cdi(a,b,c,dR)则

z1z2(ac)(bd)iz1z2(acbd)(adbc)i

z1z2(acbd)(adbc)icd22(z20)

2,几个重要的结论

2222(1)|z1z2||z1z2|2(|z1||z2|)

(2)zz|z|2|z|2(3)若z为虚数,则|z|z3.运算律

(1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

224.关于虚数单位i的一些固定结论:

(1)i1(2)ii(3)i1(2)ii234nn2in3in

扩展阅读:高中数学文科选修1-2知识点总结

高中数学选修1-2知识点总结

第一章统计案例

1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系

③线性回归方程:ybxa(最小二乘法)

nxiyinxyi1bn2其中,2xinxi1aybx注意:线性回归直线经过定点(x,y).

2.相关系数(判定两个变量线性相关性):r(xi1nix)(yiy)2

(xi1nix)(yi1niy)2注:⑴r>0时,变量x,y正相关;r第二章框图

1.流程图

流程图是由一些图形符号和文字说明构成的图示.流程图是表述工作方式、工艺流程的一种常用手段,它的特点是直观、清晰.3.结构图

一些事物之间不是先后顺序关系,而是存在某种逻辑关系,像这样的关系可以用结构图来描述.常用的结构图一般包括层次结构图,分类结构图及知识结构图等.

第三章推理与证明

1.推理⑴合情推理:

归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理

由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。归纳推理是由部分到整体,由个别到一般的推理。②类比推理

由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。类比推理是特殊到特殊的推理。⑵演绎推理

从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

2

2.证明

(1)直接证明①综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。②分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。(2)间接证明……反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

第四章复数

1.复数的有关概念

(1)把平方等于-1的数用符号i表示,规定i2=-1,把i叫作虚数单位.

(2)形如a+bi的数叫作复数(a,b是实数,i是虚数单位).通常表示为z=a+bi(a,b∈R).(3)对于复数z=a+bi,a与b分别叫作复数z的______与______,并且分别用Rez与Imz表示.2.数集之间的关系

复数的全体组成的集合叫作_____________,记作C.3.复数的分类

实数(b=0)

复数a+bi

纯虚数(a=0)(a,b∈R)虚数(b≠0)

非纯虚数(a≠0)

4.两个复数相等的充要条件

设a,b,c,d都是实数,则a+bi=c+di,当且仅当_________

3

5.复平面

(1)定义:当用__________________的点来表示复数时,我们称这个直角坐标平面为复平面.(2)实轴:_______称为实轴.虚轴:_________称为虚轴.6.复数的模

若z=a+bi(a,b∈R),则_______________.7.共轭复数

(1)定义:当两个复数的实部________,虚部互为___________时,这样的两个复数叫作互为共轭复数.复数z的共轭复数用______表示,即若z=a+bi,则z-=__________.2)性质:==___________.

必背结论

1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虚数b≠0(a,b∈R);

(3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

友情提示:本文中关于《高中数学选修2-2知识点总结》给出的范例仅供您参考拓展思维使用,高中数学选修2-2知识点总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


高中数学选修2-2知识点总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/471951.html
相关阅读
最近更新
推荐专题