公文素材库 首页

初三数学圆的总结(1)

时间:2019-05-28 14:28:46 网站:公文素材库

初三数学圆的总结(1)

圆的全章复习

1.圆的基础知识(1)圆的有关概念:

弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。(2)圆的确定

圆心决定位置,半径决定大小,不共线的三点确定一个圆。注意:作图(两边中垂线找交点),外心的位置,外心到三角形各顶点距离等

③圆的对称性:轴对称,中心对称,旋转不变性

2.圆与其它图形(1)点与圆三种(2)直线与圆

相离dr①一条直线与圆三种相切dr

相交dr②两条直线与圆有关的角:圆周角,弦切角,圆外角等比例线段:圆幂定理等

③三条直线与圆即三角形与圆

三角形“四心”的区别:垂心意义三条高的交点性质等式积:位置锐角三角形:内部直角三角形:直角顶点钝角三角形:外部必在三角形内部ahabhbchc重心三条中线的交点同一中线上重心到顶点的距离是它到该顶点的对边距离的2倍外心1.外接圆的圆心2.三边中垂线的交点1.内切圆的圆心2.三条角平分线的交点到三角形三顶点距离相等锐角三角形:内部直角三角形:斜边中点钝角三角形:外部到三角形三边距离相等与顶点连线平分该内角必在三角形内部内心

④四条直线与圆为180内切四边形:对角之和

的和相等外切四边形:两组对边(3)两圆与直线

两圆外切时连心线过内公切线切点与该切线垂直。两圆内切时连心线过切点,垂直于过切点的切线。

两圆相交时,连心线垂直于公共弦,并且平分公共弦。

3.圆与圆的位置关系:

(1).掌握圆与圆的五种位置关系,类比于点与圆,直线与圆的位置关系,能通过两圆半径r1,r2及圆心距d三者的数量关系,判断两圆位置关系,或通过位置关系,判断数量关系。(2).在数轴上表示当d在不同位置时,两圆的位置关系。

(3).在证明两圆的或多圆的图形时,常加的辅助线:公共弦、公切线;圆心距,连心线。(4).当两圆相交时,连心线垂直平分公共弦。当两圆内切时,连心线垂直于公切线。当两圆外切时,连心线垂直于内公切线。

(5).公切线是指两个圆公共的切线,如果两圆在公切线同旁则称外公切线,如果两圆在公切线两旁则称内切线。公切线上两切点间线段的长叫公切线长。

(Rr)(外离时)(6).如图内公切线长d(Rr)(外离、外切、相交时)外公切线长dd圆心距

R大圆半径

r小圆半径

R≥r

2222

内公切线Rr夹角一半sin

d的正弦值

外公切线Rr夹角一半sin

d的正弦值(7).公切线条数①内含0条0dRr②内切1条dRr③相交2条RrdRr④外切3条dRr⑤外离4条dRr4.定理

(1)垂径定理及推论:过圆心;垂直弦;平分弦(非直径);平分优弧;平分劣弧;知2求3。

(2)圆心角,弦,弦心距,弧之间关系:同圆等圆中知1得3。

(3)与圆有关的角:圆心角,圆周角,弦切角,圆内角,圆外角,圆内接四边形外角,内对角,对角

1.一条弧所对圆周角等于它所对的圆心角的一它所对弧度数的一半半,圆周角的度数等于角相等;同圆或等圆中2.同弧或等弧所对的圆周圆周角的性质

相等的圆周角所对的弧也相等3.直径所对的圆周角是直角,90。的圆周角所对的弦是直角(4)切线的判定、性质:

①判定:常见的证法连半径,证垂直,判断切线,“连垂切”

或作垂直证d=r

②性质:若一条直线满足过圆心、过切点,垂直于切线中任意两条,可得另外一条。常见“切连垂”(5)和圆有关的比例线段:

相交弦定理及推论,切割线定理及推论

5.和圆有关的计算(1)求线段①直径、半径

②垂径定理:求弦长、弦心距、拱高

③切线长、公切线长(外公切线长,内公切线长)④直角三角形内切圆半径

⑤任意三角形内切圆半径与面积、周长的关系⑥等边三角形内切圆半径:外接圆半径=1:2⑦与圆有关的比例线段、弦长、切线长等(2)求角

圆心角,圆周角,弦切角,两切线夹角,公切线夹角6.常见辅助线

半径、直径、弦心距、“切连垂”、连心线、公共弦、公切线7.圆中常见图形

直角三角形等腰三角形圆内接四边形相似三角形

8.正多边形和圆

(n2)180正n边形的内角和为(n2)180有n个相等的内角,每个内角的度数为

n注意:正多边形的外交和始终为3609.弧长公式:lnR

180nR210.扇形面积公式:3

扩展阅读:初三数学圆的总结(1)[1]

圆的全章复习

1.圆的基础知识(1)圆的有关概念:

弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。(2)圆的确定

圆心决定位置,半径决定大小,不共线的三点确定一个圆。

注意:作图(两边中垂线找交点),外心的位置,外心到三角形各顶点距离等

③圆的对称性:轴对称,中心对称,旋转不变性

2.圆与其它图形(1)点与圆三种(2)直线与圆

相离dr①一条直线与圆三种相切dr

相交dr有关的角:圆周角,弦切角,圆外角等②两条直线与圆

比例线段:圆幂定理等③三条直线与圆即三角形与圆

三角形“四心”的区别:

垂心意义三条高的交点性质等式积:ahabhbchc位置锐角三角形:内部直角三角形:直角顶点钝角三角形:外部必在三角形内部重心三条中线的交点同一中线上重心到顶点的距离是它到该顶点的对边距离的2倍外心1.外接圆的圆心2.三边中垂线的交点到三角形三顶点距离相等锐角三角形:内部直角三角形:斜边中点钝角三角形:外部到三角形三边距离相等与顶点连线平分该内角必在三角形内部内心

1.内切圆的圆心2.三条角平分线的交点

内切四边形:对角之和④四条直线与圆外切四边形:两组对边为180的和相等

(3)两圆与直线

两圆外切时连心线过内公切线切点与该切线垂直。两圆内切时连心线过切点,垂直于过切点的切线。

两圆相交时,连心线垂直于公共弦,并且平分公共弦。

3.圆与圆的位置关系:

(1).掌握圆与圆的五种位置关系,类比于点与圆,直线与圆的位置关系,能通过两圆半径r1,r2及圆心距d三者的数量关系,判断两圆位置关系,或通过位置关系,判断数量关系。(2).在数轴上表示当d在不同位置时,两圆的位置关系。

(3).在证明两圆的或多圆的图形时,常加的辅助线:公共弦、公切线;圆心距,连心线。(4).当两圆相交时,连心线垂直平分公共弦。当两圆内切时,连心线垂直于公切线。

当两圆外切时,连心线垂直于内公切线。

(5).公切线是指两个圆公共的切线,如果两圆在公切线同旁则称外公切线,如果两圆在公切线两旁则称内切线。公切线上两切点间线段的长叫公切线长。(6).如图内公切线长d(Rr)(外离时)

(Rr)(外离、外切、相交时)外公切线长d2222d圆心距R大圆半径r小圆半径R≥r

内公切线Rrd

外公切线Rrd

夹角一半sin的正弦值夹角一半sin的正弦值

(7).公切线条数①内含②内切③相交

0条

1条dRrRrdRr2条0dRr④外切⑤外离

dRrdRr

3条4条

4.定理

(1)垂径定理及推论:过圆心;垂直弦;平分弦(非直径);平分优弧;平分劣弧;知2求3。

(2)圆心角,弦,弦心距,弧之间关系:同圆等圆中知1得3。

(3)与圆有关的角:圆心角,圆周角,弦切角,圆内角,圆外角,圆内接四边形外角,内对角,对角

1.一条弧所对圆周角等于它所对的圆心角的一它所对弧度数的一半半,圆周角的度数等于角相等;同圆或等圆中2.同弧或等弧所对的圆周也相等相等的圆周角所对的弧。3.直径所对的圆周角是直角,90的圆周角所对的弦是直角圆周角的性质

(4)切线的判定、性质:

①判定:常见的证法连半径,证垂直,判断切线,“连垂切”

或作垂直证d=r

②性质:若一条直线满足过圆心、过切点,垂直于切线中任意两条,可得另外一条。常见“切连垂”

(5)和圆有关的比例线段:

相交弦定理及推论,切割线定理及推论

5.和圆有关的计算(1)求线段①直径、半径

②垂径定理:求弦长、弦心距、拱高

③切线长、公切线长(外公切线长,内公切线长)④直角三角形内切圆半径

⑤任意三角形内切圆半径与面积、周长的关系⑥等边三角形内切圆半径:外接圆半径=1:2⑦与圆有关的比例线段、弦长、切线长等(2)求角

圆心角,圆周角,弦切角,两切线夹角,公切线夹角6.常见辅助线

半径、直径、弦心距、“切连垂”、连心线、公共弦、公切线7.圆中常见图形

直角三角形等腰三角形圆内接四边形相似三角形

8.正多边形和圆

正n边形的内角和为(n2)180有n个相等的内角,每个内角的度数为

(n2)180n

注意:正多边形的外交和始终为3609.弧长公式:lnR

180101圆是定点的距离等于定长的点的**

102圆的内部可以看作是圆心的距离小于半径的点的**103圆的外部可以看作是圆心的距离大于半径的点的**104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)

210.扇形面积公式:

nR360

101圆是定点的距离等于定长的点的**

102圆的内部可以看作是圆心的距离小于半径的点的**103圆的外部可以看作是圆心的距离大于半径的点的**104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)

④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180

145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)11.

友情提示:本文中关于《初三数学圆的总结(1)》给出的范例仅供您参考拓展思维使用,初三数学圆的总结(1):该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


初三数学圆的总结(1)
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/585210.html
相关阅读
最近更新
推荐专题