公文素材库 首页

八年级下册数学总结

时间:2019-05-28 14:53:37 网站:公文素材库

八年级下册数学总结

水城县青林中学201*年春季学期八年级(1)班

数学教育教学工作总结

1

教师:蒋仕涛201*年7月6日

水城县青林中学201*年春季学期八年级(1)班

数学教育教学工作总结

数学,它是一门来源于生活,服务于生活的学科,它在经济社会的发展中有着重要的作用。在学校的安排下,我继续担任了八年级(1)班数学教学工作。由于学生的数学基础太差,对这样的学生进行数学教学,无论是教学内容还是教学观念方法方式方面都有新的挑战,教学起来感到不适应、很吃力。我不敢放松自己,每天都花三个小时以上时间去备课,钻研教材,以尽快用新的方法适应新的学生的数学教学。即按照教学计划的要求认真第去做每一件事情,并完成了计划的全部内容,通过一个学期的努力,也取得不少经验,同时也得到不少教训,获得失败的伤痛,有时屡试屡败。总之,磕磕绊绊、摸着石头过河、边学边教、边做边适应,不但教法适应了学生,而且老师也很快地适应了学生。为了使自己在今后的教学工作中得到发展,使自己的教学经验越来越丰富,为此,现将一学期来的教学工作总结如下:

一、主要工作及取得的成绩:1、做好课前准备和课后反思工作

面对新的教学要求,激起我的挑战欲望,决心立志要在新的教学研究中争取教育教学方面取得有所成就。于是我按照教育教学计划的要求每天花3小时以上时间认真查阅资料、认真阅读教材、挖掘教材、活用教材,研究教材的重点、难点、关键,进一步研读新课标,明白这节课的要求,思考如何将新理念及新的教学方法融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法和教学设计,根据八年级(1)班同学的具体情况制定课时计划。每一课都做好充分的准备。为了使学生易懂易学,我还根据教材制作各种利于吸引学生注意力的有趣教具,制作课件,同时把学校所拥有的教具运用于教育教学中。课后及时对该堂课作出总结,写好教学反思,并每上完一章进行一次总结,期末进行一次大的总结,在期末的教学反思总结中,对代数、几何、统计知识进行了分开的叙述。

2、把好上课关,提高课堂教学效率、质量。

新教材的数学教学课通常采用“问题情境建立模型解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,这些情境使学生了解与学习这些知识的有效切入点以及作用。所以在课堂上我想方设法创设能吸引学生注意的情境,提高学生学习数学的兴趣,让学生知道数学知识来源于生活、服务于生活的真实道理,同时也使学生在上每一节课都有新鲜感。新教材的教学倡导“自主、合作、探究”的学习方式。我在课堂上常为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。由于学生乐学,兴致高昂,通常学生获得的知识都超过教材的范围。

3、虚心请教同上数学课老师。在教学上,有疑必问。由于自己还没有丰富的教学经验,所以我都要虚心向他们专业化水平较高的数学老师请教每节课的好做法和需要注意什么问题,结合他们的意见和自己的思考结果进行总结归纳,为此每节课的教学都能顺利有效地进行。

4、做好“培优、辅中、稳差”工作。根据本班学生学习数学的基础和潜力,我把他们分成三类:优生、中等生和后进生。利用每天中、下午放学后的半个小时的时间分别辅导他们,对每一天的辅导类别进行了安排,其他有问题要问的学生自由来办公室问。除了老师辅导外,我还要求学生成立“数学学习兴趣互动小组”,即一名优生负责一至两名中等生和一名后进生,优生要将讨论的问题弄懂弄透了才去辅导其他同学。

5、制定数学课堂常规,促成良好学风。我所教八年级(1)班,开学初上课的时候不够认真,常有睡觉、开小差、讲粗言烂语的现象,课后作业完成情况也糟糕,甚至有放弃学习数学的学生。对此,我就制定数学课堂常规,按常规进行奖罚,并且在全班学生中通过。由于此常规是老师制定并在学生中讨论通过得出来的,所以它得到全体同学的认可。在数学课堂里迅速形成一种认真、求实的学风,出现了“四少”:抄袭作业的行为少了,讲粗言烂语的少了,上数学课开小差的

少了,不学习数学的少了。出现了“三多”:热爱学习数学的多了,好问的多了,文明礼貌的行为多起来了。

6、作业的布置与批改。按照计划的要求精心地安排每一次作业,安排的作业相当具有代表性,认真的批改,对作业存在的问题作了详细的记载,并给予及时的纠正。

7、测试工作。每上完一章就进行一次测试,及时了解学生对本章知识的掌握情况,对测试的试卷进行测试质量分析,找出学生薄弱环节,及时给予弥补。

二、存在问题:

1、学生方面。在本学期的数学教育教学中,部分学生还没有改变以前懒惰的学习习惯,老师要求记忆的地方没有很好地去记忆,同时大部分的学生缺乏课后的迅速的复习巩固,导致听课时能听懂,但课后却什么都不知道;部分学生做作业时抄袭他人作业或参考答案书的现象仍然有不同程度的出现。

2、教师方面。自己的教育教学能力及科研水平还不够高,对新课标的学习和理解不够,教学方法的多样性、灵活性不强,不能适应班上的每一个学生,没有把基础特别差的学生真正转变。

三、下学期的努力方向:

1、加强新课标学习与钻研,进一步考虑课堂教学设计、研究等的效果,“培优、辅中、稳差”的方法方式还有待完善。

2、加强对学生的管理,提高学生学习数学的兴趣和能力,严格控制抄袭作业现象的发生,进一步完善班级的学习管理制度。

3、加强理想教育,使学生认识学习数学的重要性和数学知识的实用性,提高学生学习数学的兴趣。

教师:蒋仕涛201*年7月6日

扩展阅读:北师大版《数学》(八年级下册)知识点总结

北师大版《数学》(八年级下册)知识点总结

第一章一元一次不等式和一元一次不等式组

一.不等关系

※1.一般地,用符号“”(或“≥”)连接的式子叫做不等式.

¤2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系.

※3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数大于等于0(≥0)0和正数不小于0非正数小于等于0(≤0)0和负数不大于0二.不等式的基本性质

※1.掌握不等式的基本性质,并会灵活运用:

(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c.

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,

acbc.

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且cb;如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;如果a0a=ba-b=0a

三.不等式的解集:

※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.

※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.

¤3.不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四.一元一次不等式:

※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.

※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

※3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;

⑤系数化为1(不等号的改变问题)

※4.一元一次不等式基本情形为ax>b(或ax0时,解为xba;

②当a=0时,且b

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意.五.一元一次不等式与一次函数六.一元一次不等式组

※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且ab图示叙述语言表达ab两大取较大x>aab两小取小a

解因式.

※2.因式分解与整式乘法是互逆关系.因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.二.提公共因式法

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

如:abaca(bc)※2.概念内涵:

(1)因式分解的最后结果应当是“积”;(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

mambmcm(abc)

※3.易错点点评:

(1)注意项的符号与幂指数是否搞错;(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.三.运用公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2.主要公式:

(1)平方差公式:a2b2(ab)(ab)(2)完全平方公式:a22abb2(ab)2

a2abb(ab)222

¤3.易错点点评:

因式分解要分解到底.如x4y4(x2y2)(x2y2)就没有分解到底.

※4.运用公式法:(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;③二项是异号.(2)完全平方公式:①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.※5.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.四.分组分解法:

※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.如:amanbmbna(mn)b(mn)(ab)(mn)※2.概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.※3.注意:分组时要注意符号的变化.五.十字相乘法:

※1.对于二次三项式ax2bxc,将a和c分别分解成两个因数的乘

a1c1c2积,aa1a2,cc1c2,且满足ba1c2a2c1,往往写成次三项式进行分解.

如:ax2bxc(a1xc1)(a2xc2)

5

a2的形式,将二

※2.二次三项式x2pxq的分解:

pabqab11abxpxq(xa)(xb)

2※3.规律内涵:

(1)理解:把x2pxq分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.※4.易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

第三章分式

一.分式

※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式.

整式A除以整式B,可以表示成那么称

ABAB的形式.如果除式B中含有字母,

为分式,对于任意一个分式,分母都不能为零.

整式分式※2.整式和分式统称为有理式,即有:有理式

※3.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.

ABAMBM,ABAMBM(M0)

※4.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这

个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.二.分式的乘除法

※1.分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:

ACACBDBD,

ABCDADADBCBC

※2.分式乘方,把分子、分母分别乘方.

AA即:nBBnn(n为正整数)

n逆向运用

ABnnAAA,当n为整数时,仍然有n成立.

BBBnn※3.分子与分母没有公因式的分式,叫做最简分式.三.分式的加减法

※1.分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

※2.分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.

(1)同分母的分式相加减,分母不变,把分子相加减;上述法则用式子表示是:

ACBCABC

(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:

※3.概念内涵:

通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解.四.分式方程

※1.解分式方程的一般步骤:

ABCDADBDBCBDADBCBD

①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;

③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;

③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案.

第四章相似图形

一.线段的比

※1.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成

ABmn.

abcd※2.四条线段a、b、c、d中,如果a与b的比等于c与d的比,即那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

※3.注意点:

①a:b=k,说明a是b的k倍;②由于线段

a、b的长度都是正数,所以k是正数;

,

③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,⑤比例的基本性质:若二.黄金分割

※1.如图1,点C把线段AB分成两条线段AC和BC,如果

ACABBCACab与

ba互为倒数;

abcdabcd,则ad=bc;若ad=bc,则

_A

图1_

_C_B

,那么称

线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

AC:AB5120.618:1

※2.黄金分割点是最优美、最令人赏心悦目的点.四.相似多边形

¤1.一般地,形状相同的图形称为相似图形.

※2.对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

五.相似三角形

※1.在相似多边形中,最为简简单的就是相似三角形.

※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

※3.全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

※4.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

※5.相似三角形周长的比等于相似比.※6.相似三角形面积的比等于相似比的平方.六.探索三角形相似的条件※1.相似三角形的判定方法:

一般三角形直角三角形A_B_C_D_E_F_基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例.例.①一个锐角对应相等;②两条边对应成比例:a.两直角边对应成比例;b.斜边和一直角边对应成比l_

l_

图_2

※2.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.

如图2,l1//l2//l3,则

ABDEBCEF.

※3.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

八.相似的多边形的性质

※相似多边形的周长等于相似比;面积比等于相似比的平方.九.图形的放大与缩小

※1.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比.

※2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3.位似变换:

①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.

②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.

第五章数据的收集与处理

一.每周干家务活的时间

※1.所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;

从总体中取出的一部分个体叫做这个总体的一个样本.※2.为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查.二.数据的收集

※1.抽样调查的特点:调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

而估计值是否接近实际情况还取决于样本选得是否有代表性.

第六章证明(一)

二.定义与命题

※1.一般地,能明确指出概念含义或特征的句子,称为定义.

定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.

※2.可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.

※3.数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

※4.有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

¤5.根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.三.为什么它们平行

※1.平行判定公理:同位角相等,两直线平行.(并由此得到平行的判定定理)※2.平行判定定理:同旁内互补,两直线平行.※3.平行判定定理:同错角相等,两直线平行.四.如果两条直线平行

※1.两条直线平行的性质公理:两直线平行,同位角相等;※2.两条直线平行的性质定理:两直线平行,内错角相等;※3.两条直线平行的性质定理:两直线平行,同旁内角互补.五.三角形和定理的证明

※1.三角形内角和定理:三角形三个内角的和等于180°¤2.一个三角形中至多只有一个直角¤3.一个三角形中至多只有一个钝角¤4.一个三角形中至少有两个锐角六.关注三角形的外角

※1.三角形内角和定理的两个推论:

推论1:三角形的一个外角等于和它不相邻的两个内角的和;推论2:三角形的一个外角大于任何一个和它不相邻的内角.

友情提示:本文中关于《八年级下册数学总结》给出的范例仅供您参考拓展思维使用,八年级下册数学总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


八年级下册数学总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/587438.html
相关阅读
最近更新
推荐专题