公文素材库 首页

《导数及其应用》知识点总结

时间:2019-05-28 22:38:03 网站:公文素材库

《导数及其应用》知识点总结

《导数及其应用》知识点总结

一、导数的概念和几何意义

1.函数的平均变化率:函数f(x)在区间[x1,x2]上的平均变化率为:

f(x2)f(x1)。

x2x12.导数的定义:设函数yf(x)在区间(a,b)上有定义,x0(a,b),若x无限趋近于0时,比值

yf(x0x)f(x0)无限趋近于一个常数A,则称函数f(x)在xx0处可导,xx并称该常数A为函数f(x)在xx0处的导数,记作f(x0)。函数f(x)在xx0处的导数的实质是在该点的瞬时变化率。

3.求函数导数的基本步骤:(1)求函数的增量yf(x0x)f(x0);(2)求平均变化率:

f(x0x)f(x0)f(x0x)f(x0);(3)取极限,当x无限趋近与0时,无限趋

xx近与一个常数A,则f(x0)A.4.导数的几何意义:

函数f(x)在xx0处的导数就是曲线yf(x)在点(x0,f(x0))处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步:

(1)求出yf(x)在x0处的导数,即为曲线yf(x)在点(x0,f(x0))处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为yy0f(x0)(xx0)。当点P(x0,y0)不在yf(x)上时,求经过点P的yf(x)的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线yf(x)在点(x0,f(x0))处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为xx0。

5.导数的物理意义:

质点做直线运动的位移S是时间t的函数S(t),则VS(t)表示瞬时速度,av(t)表示瞬时加速度。二、导数的运算

1.常见函数的导数:

(1)(kxb)k(k,b为常数);(3)(x)1;

(2)C0(C为常数);(4)(x2)2x;(6)(1)12;

xx1

(5)(x3)3x2;(7)(x)1;

2x

(8)(xα)αxα1(α为常数);

(10)(logax)1logae1(a0,a1);

xxlna(12)(lnx)1;x(14)(cosx)sinx。

(9)(ax)axlna(a0,a1);(11)(ex)ex;

(13)(sinx)cosx;

2.函数的和、差、积、商的导数:(1)[f(x)g(x)]f(x)g(x);(2)[Cf(x)]Cf(x)(C为常数);

(3)[f(x)g(x)]f(x)g(x)f(x)g(x);

f(x)f(x)g(x)f(x)g(x)](g(x)0)。(4)[g(x)g2(x)3.简单复合函数的导数:

yuux,即yxyua。若yf(u),uaxb,则yx三、导数的应用

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

xf(x)f(x)(,x1)x1(x1,x2)…xn(xn,)正负单调性0正负单调性0正负单调性(4)检查f(x)的符号并由表格判断极值。3.求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

扩展阅读:《导数及其应用》知识点总结

《导数及其应用》知识点总结

一、导数的概念和几何意义

1.函数的平均变化率:函数f(x)在区间[x1,x2]上的平均变化率为:

f(x2)f(x1)。

x2x12.导数的定义:设函数yf(x)在区间(a,b)上有定义,x0(a,b),若x无限趋近于0时,比值

yf(x0x)f(x0)无限趋近于一个常数A,则称函数f(x)在xx0处可导,xx并称该常数A为函数f(x)在xx0处的导数,记作f(x0)。函数f(x)在xx0处的导数的实质是在该点的瞬时变化率。

3.求函数导数的基本步骤:(1)求函数的增量yf(x0x)f(x0);(2)求平均变化率:

f(x0x)f(x0)f(x0x)f(x0);(3)取极限,当x无限趋近与0时,无限趋

xx近与一个常数A,则f(x0)A.4.导数的几何意义:

函数f(x)在xx0处的导数就是曲线yf(x)在点(x0,f(x0))处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步:

(1)求出yf(x)在x0处的导数,即为曲线yf(x)在点(x0,f(x0))处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为yy0f(x0)(xx0)。当点P(x0,y0)不在yf(x)上时,求经过点P的yf(x)的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线yf(x)在点(x0,f(x0))处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为xx0。5.导数的物理意义:

质点做直线运动的位移S是时间t的函数S(t),则VS(t)表示瞬时速度,av(t)表示瞬时加速度。二、导数的运算

1.常见函数的导数:

(1)(kxb)k(k,b为常数);(3)(x)1;

(2)C0(C为常数);(4)(x2)2x;(6)(1)12;

xx1

(5)(x3)3x2;(7)(x)1;

2x

(8)(xα)αxα1(α为常数);

(10)(logax)1logae1(a0,a1);

xxlna(12)(lnx)1;x(14)(cosx)sinx。

(9)(ax)axlna(a0,a1);(11)(ex)ex;

(13)(sinx)cosx;

2.函数的和、差、积、商的导数:(1)[f(x)g(x)]f(x)g(x);(2)[Cf(x)]Cf(x)(C为常数);

(3)[f(x)g(x)]f(x)g(x)f(x)g(x);

f(x)f(x)g(x)f(x)g(x)(4)[](g(x)0)。

g(x)g2(x)3.简单复合函数的导数:

yuux,即yxyua。若yf(u),uaxb,则yx三、导数的应用

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或,则称f(x0)是函数f(x)的极小值(或极大值)。f(x)f(x0))

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

xf(x)f(x)(,x1)x1(x1,x2)…xn(xn,)正负单调性0正负单调性0正负单调性(4)检查f(x)的符号并由表格判断极值。3.求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4.解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5.导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

友情提示:本文中关于《《导数及其应用》知识点总结》给出的范例仅供您参考拓展思维使用,《导数及其应用》知识点总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


《导数及其应用》知识点总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/628272.html
相关阅读
最近更新
推荐专题