公文素材库 首页

小升初数学命题趋势及知识点归纳总结

时间:2019-05-29 06:17:00 网站:公文素材库

小升初数学命题趋势及知识点归纳总结

逻辑推理

基本方法简介:

①条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

八人教育的专家对小升初数学的命题趋势进行了分析,并对小升初数学的热点问题,常见考点,考试中的注意事项进行了归纳总结,希望对各位小升初数学复习起到一定的辅助作用。

小升初数学命题趋势及知识点归纳总结

一、关于数学命题趋势的分析

纵观各级各类考试,数学命题有以下三个方面的趋势:

(一)综合性主要考查学生的"双基",以及知识的综合运用能力。

如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分"借"。分数运算中"约分"的思想是化繁为简的理论基础,要将它和关系"重新组合"、"拆项"等结合起来,加以训练。(二)延续性所谓"延续性"是指相关数学知识在以后的学习中是否会重新"遭遇"。从数学体系的角度来看,"函数"的思想、"立体感"的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。(三)变通性所谓"变通性"是指学生对相关数学知识的灵活运算的能力。常见的有"发现新规律,定义新运算的能力"、"优化设计(最大、最小)的能力"、"分析推理(执因索果)的能力"、以及"公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力"。二、关于数学应用问题的归类

小学数学的应用题往往是概念、公式的应用。

小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;"一成"就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Πr或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽;正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2×底×高;梯形的面积:=1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:"底面积×高"等等。

(一)分数、百分数的应用题"分率(百分率、利率、折扣)"的概念是解题的关键,其中标准量"1"的选取是解题突破口

(二)工程问题工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率×工作时间;工作效率=工作量/工作时间;工作时间=工作量/工作效率;总工作量=各分工作量之和

(三)行程问题从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是"路程=时间×速度;时间=路程/速度;速度=路程/时间",往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是"变化的条件",如何在解题中准确运用"不变的公式"。(四)浓度问题(不作重点要求)这类题目要求了解的关系式:溶液=溶质+溶剂;浓度=溶质/溶液;溶液=溶质/浓度;溶质=溶液×浓度三、简单的几何问题

面积、体积问题主要考虑以下内容:

平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?

提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。

求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?

提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。求长方体和圆柱的体积有什么相同的地方?

提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。圆柱(锥)是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。四、简单的统计简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。

在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。

要认识统计图,并明确统计图的特点和作用,经历"收集、整理数据和用统计图表示数据、整理结果"过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。

求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。

掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道"本金"、"利息"、"利率"的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税?什么是成活率?它的计算公式是什么?

扩展阅读:小升初数学命题趋势及知识点归纳总结

小升初数学命题趋势及知识点归纳总结

教育专家对小升初数学的命题趋势进行了分析,并对小升初数学

的热点问题,常见考点,考试中的注意事项进行了归纳总结,希望对各位小升初数学复习起到一定的辅助作用。

一、关于数学命题趋势的分析

纵观各级各类考试,数学命题有以下三个方面的趋势:

(一)综合性主要考查学生的"双基",以及知识的综合运用能力。

如:小学数学的分数、小数的四则混合运算。运算中要注意:小数的相加、相减、相除三类运算中的小数点对齐问题,乘法运算中的乘数与被乘数共有几位小数,所得的积就有几位小数,不够时要补零。分数的加减运算要注意通分(先找出分母的最小公倍数,再将分子、分母同时扩大相同的倍数。)带分数相加减,应将整数、分数部分分别相加减,然后将所得的结果进行合并,如分数部分不够减,要考虑向整数部分"借"。分数运算中"约分"的思想是化繁为简的理论基础,要将它和关系"重新组合"、"拆项"等结合起来,加以训练。

(二)延续性所谓"延续性"是指相关数学知识在以后的学习中是否会重新"遭遇"。从数学体系的角度来看,"函数"的思想、"立体感"的建立等都是非常重要的。这些内容在小学数学中往往表现为应用题的列式,圆、圆柱、圆锥、长方体、正方体的识图、运算与转化等。

(三)变通性所谓"变通性"是指学生对相关数学知识的灵活运算的能力。常见的有"发现新规律,定义新运算的能力"、"优化设计(最大、最小)的能力"、"分析推理(执因索果)的能力"、以及"公式的变形与迭代(包括单位换算、数的进制、手表问题等)的能力"。

二、关于数学应用问题的归类

小学数学的应用题往往是概念、公式的应用。

小学数学常用的一些概念、公式,应加以记忆。如:存入银行的钱叫做本金;取款时银行多付的钱叫做利息;购买建设债券和储蓄在实质上是一样的,是支援国家建设的另一种方式,只是债券的利率一般高于定期储蓄;"一成"就是十分之一,改写成百分数就是10%;表示两个比相等的式子叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;在比例里,两个外项的积等于两个内项的积(比例的基本性质);比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例,解比例要根据比例的基本性质来解。图上距离和实际距离的比叫做比例尺;一种量变化,另一种量也随着变化,这两种量是两种相关联的量;圆的周长公式:C=2Πr或C=ΠD;圆柱的侧面积=底面周长×高;长方体的体积=长×宽×高=底面积×高;长方形的面积=长×宽;正方形的面积=边长×边长;平行四边形的面积=底×高;三角形的面积=1/2×底×高;梯形的面积:=1/2(上底+下底)×高;圆的面积=∏×R×R;长方体、正方体和圆柱的体积公式可以统一写成:"底面积×高"等等。

(一)分数、百分数的应用题"分率(百分率、利率、折扣)"的概念是解题的关键,其中标准量"1"的选取是解题突破口

(二)工程问题工程问题要弄清工作量、工作效率、工作时间三者之间的关系:工作量=工作效率×工作时间;工作效率=工作量/工作时间;工作时间=工作量/工作效率;总工作量=各分工作量之和

(三)行程问题从表层意义上是考查学生对路程、时间、速度三者关系的认识,从深层次的角度分析,实际上是检查学生的变通能力,因为需要考虑的不仅仅是"路程=时间×速度;时间=路程/速度;速度=路程/时间",往往还涉及到时间、地点和方向等诸多要素,因此,解这类题目的关键是认准哪些是"变化的条件",如何在解题中准确运用"不变的公式"。

(四)浓度问题(不作重点要求)这类题目要求了解的关系式:溶液=溶质+溶剂;浓度=溶质/溶液;溶液=溶质/浓度;溶质=溶液×浓度

三、简单的几何问题

面积、体积问题主要考虑以下内容:

平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?

提示:我们在得到长方形面积计算公式后,可以通过剪、拼等方法,对图形进行转化,从而得出相应图形的面积计算公式。

求表面积就是求立体图形的什么?(所有面的面积总和)长方体表面积是怎样算的?这类题还有什么简便的方法?圆柱体表面积是怎样算的?

提示:立体图形的表面积是所有面的面积的总和,所以要先求各部分的面积,然后相加。长方体和圆柱体的表面积都可以用侧面积加两个底面积。

求长方体和圆柱的体积有什么相同的地方?

提示:长方体其实也是一个柱体,长方体和圆柱体的体积,其实都是用底面积乘以高。

圆柱(锥)是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的。要认识圆柱的底面、侧面和高;认识圆锥的底面和高。要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。

四、简单的统计

简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。

在统计工作中除了对数据进行分类整理用统计表来表示以外,有时还可以用统计图来表示。常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。

要认识统计图,并明确统计图的特点和作用,经历"收集、整理数据和用统计图表示数据、整理结果"过程。能根据绘制出的统计图,分析数据所反映的一些简单事实,能作出一些简单的推理与判断,进一步认识统计是解决实际问题的一种策略和方法。在学习统计知识的同时,感受数学与生活的联系及其在生活中的应用。

求平均数的关键,是要先弄清被平均的数量是什么,总数是多少;以及要求的平均数是按照什么平均的,要平均分成多少份等等。

掌握一些与百分数有关的概念,如:发芽率,出勤率,成活率,利息等。了解有关利息的初步知识,知道"本金"、"利息"、"利率"的含意,会利用利息的计算公式进行一些有关利息的简单计算。理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。税收的计算也是百分数的一种具体应用。了解什么是个人所得税,怎样计算个人所得税?什么是成活率?它的计算公式是什么?

友情提示:本文中关于《小升初数学命题趋势及知识点归纳总结》给出的范例仅供您参考拓展思维使用,小升初数学命题趋势及知识点归纳总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


小升初数学命题趋势及知识点归纳总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/667906.html
相关阅读
最近更新
推荐专题