高一物理力学知识点总结
力定义:力即物体之间的相互作用。国际单位:牛顿,简称牛,符号是N。这是为了纪念英国科学家伊萨克牛顿而命名的。1N=1kgm/(s^2)力具有:物质性、相互性、矢量性、同时性、独立性、传递速度力的作用效果:力可以使物体发生形变。力可以改变物体的运动状态(速度大小、运动方向,两者同时改变)。力的三要素:大小、方向、作用点力学可分为静力学、运动学和动力学四种基本力(相互作用):强相互作用力、弱相互作用力、电磁力、万有引力。速度:速度是位移和时间的比值,单位是米每秒,即m/s,用来描述物体运动的快慢。瞬时速度:时间间隔非常小时的速度。加速度:速度的变化量与发生这一变化所用的时间的比值。速度与加速度都是矢量。角速度:连接运动质点和圆心的半径在单位时间内转过的弧度。线速度:质点作曲线运动时所具有的即时速度。向心加速度:做匀速圆周运动的物体的加速度。功:功是能量变化的量度,W=FS功率:单位时间内所做的功,P=W/t动能:物体做机械运动具有的能,重力势能:物体由于被举高而具有的能弹性势能:物体由于发生弹性形变而发生的势能。机械能:机械能是动能与部分势能的总和。基本规律:匀变速直线运动的基本规律;见公式基本运动类型匀速直线运动是瞬时速基本解题方法:力的合成与分解(平行四边形解);三力共点平衡的特点:物体在三个力的作用下处在平衡状态,度保持不变的运动。那么这三个力不是平行的话就必共点,而且其中两个力的合力必与匀加速直线运动是瞬时第三个力大小、方向相反牛顿运动定律:1、一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。2、物体加速度的大小和它受到的力成正比,跟它本身的质量成反比,加速度的方向和力的方向相同。加速度不变直线的运动。(自由落体)匀加速运动是加速度与初速度方向不在同一直线上的运动。(平抛运动)匀速圆周运动是加速度三力平衡问题的处理方法(封多力平衡问题正交分解法);对物体的受力分析(隔离体法体的运动状态、注意静摩擦力的分处理匀变速直线运动的解析法(匀变速直线运动的s-t图像、v解决动力学问题的三大类方法方程(恒力作用下的宏观低速运动3、两个物体间的作用力和反作用力总是大小相等,方向相反,大小不变方向与运动方作用在同一直线上。向垂直的运动。(圆周运理变力作用的问题、不需考虑中间针对简谐运动的对称法、针对法万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大动)小与两物体的质量的乘积成正比,与两物体间距离的平方成反比。变速运动。(曲线运动)开普勒定律:曲线运动:曲线运动中
一、每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在质点在某一点的速度沿曲线在这一点的切线方向椭圆的一个焦点中;二、在相等时间内,太阳和运动着的行星的连线所扫过的面积相等;三、绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比;动能定理:合外力对物体做的功,等于物体在这个过程中动能的变化量;重力做功与重力势能变化的关系:物体克服重力做的功等于物体的重力势能的增加量;机械能守恒定律:在只有重力或弹力做功的物体系统内,动能和势能可以相互转化,而总的机械能不变。各种公式(按拼音首字母顺序排列)匀速圆周运动公式:线速度:vr2fr2rT:1动能:EkmV22F2动能定理:WmV22mV121212FαθF1v2422aR2R42f2RRT向心加速度:v2浮力:Fgv功:WFscos功率:P=WtPFV力的合成FF21F222F1F2COStanF2sinF1F2cos胡克定律:Fkx滑动摩擦力:fF机械能守恒定律:mgh12112mV1mgh22mV22牛顿第二定律:F合ma力矩:MFL竖直上抛运动:2上升最大高度:HVo2g上升的时间:tVog万有引力:FGm1m2r2a、万有引力=向心力GMm(Rh)2mV2(Rh)2m2(Rh)m42T2(Rh)b、在地球表面附近,重力=万有引力mgGMmR2gGMR2c、第一宇宙速度mgmV2RVgRGM/Rd、万能代换gR2GM向心力:FmamRm2R直线运动:s=tv重力:G=mg重力势能:Ep=mgh匀变速直线运动的基本规律:1、位移公式:Sv0t12at22、速度公式:vtv0at3、匀变速度运动的判别式:ss2nsn1aT4、速度与位移关系式:v2v202as5、无论匀加速还是匀减速,都有VtVs226、对于初速度为零的匀加速直线运动:按照连续相等时间间隔划分,1t、2t、3t…v1:v2:v3::vn1:2:3::n前1t、前2t、前3t内的位移之比为:x1:x2:x3::xn12:22:32::n2第1t、第2t、第3t……内的位移之比为:xⅠ:xⅡ:xⅢ::xn1:3:5::(2n1)按照连续相等的位移划分,1S末、2S末、3S末……1:2:3::n1:2:3::n第1S、第2S、第3S……所用的t1:t2:t3::tn1:(21):(32)::(nn1)
扩展阅读:高中物理热力学第一定律知识点归纳总结
高中物理竞赛热学教程第一讲温度和气体分子运动论第二讲热力学第一定律
第二讲热力学第一定律 2.1改变内能的两种方式
热力学第一定律
2.1.1、作功和传热
作功可以改变物体的内能。如果外界对系统作功W。作功前后系统的内能分别为E1、E2,则有
没有作功而使系统内能改变的过程称为热传递或称传热。它是物体之间存在温度差而发生的转移内能的过程。在热传递中被转移的内能数量称为热量,用Q表示。传递的热量与内能变化的关系是
做功和传热都能改变系统的内能,但两者存在实质的差别。作功总是和一定宏观位移或定向运动相联系。是分子有规则运动能量向分子无规则运动能量的转化和传递;传热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。2.1.2、气体体积功的计算1、准静态过程
一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化,状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于平衡态。如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要Bh发生变化。在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温
度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。在热力学中,h为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程
的概念。如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。因此,准静态过程就是实际过程非常缓慢进行时的极限情况
对于一定质量的气体,其准静态过程可用pV图、pT图、vT图上的一条曲线来表示。注意,只有准静态过程才能这样表示。
2、功
在热力学中,一般不考虑整体的机械运动。热力学系统状态的变化,总是通过做功或热传递或两者兼施并用而完成的。在力学中,功定义为力与位移这两个矢量的标积。在热力学中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功;电流的功。
(1)机械功
有些热力学问题中,应考虑流体的重力做功。如图2-1-1所示,
PS一直立的高2h的封闭圆筒,被一水平隔板C分成体积皆为V的两部分。其中都充有气体,A的密度A较小,B的密度B较大。现
将隔板抽走,使A、B气体均匀混合后,重力对气体做的总功为
E2E1W
E2E1Q
x图2-1-高中物理竞赛热学教程第二讲热力学第一定律
WAVghh1BVg(AB)Vgh222
(2)流体体积变化所做的功
我们以气体膨胀为例。设有一气缸,其中气体的压强为P,活塞的面积S(图2-1-2)。当活塞缓慢移动一微小距离x时,在这一微小的变化过程中,认为压强P处处均匀而且不变,因此是个准静态过程。气体对外界所作的元功WpSxpV,外界(活塞)对气体做功
BAWWpV,当气体膨胀时V>0,外界对气体做功W<0;气
体压缩时V<0,外界对气体做功W>0。
图2-1-3
如图2-1-3所示的A、B是两个管状容器,除了管较粗的部分高低不同之外,其他一切全同。将两容器抽成真空,
P再同时分别插入两个水银池中,水银沿管上升。大气压强皆AC为P,进入管中水银体积皆为V,所以大气对两池中水银所B做功相等,但由于克服重力做功A小于B,所以A管中水
D银内能增加较多,其温度应略高。
准静态过程可用p-V图上一条曲线来表示,功值W为
VOp-V图中过程曲线下的面积,当气体被压缩时W>0。反之
图2-1-4W<0。如图2-1-4所示的由A态到B态的三种过程,气体
都对外做功,由过程曲线下的面积大小可知:ACB过程对外
功最大,AB次之,ADB的功最小。由此可知,在给定系统的初
BA态和终态,并不能确定功的数值。功是一个过程量,只有当系统
的状态发生变化经历一个过程,才可能有功;经历不同的过程,F功的数值一般而言是不同的。
DC(3)表面张力的功
液面因存在表面张力而有收缩趋势,要加大液面就得作功。
图2-1-5
设想一沾有液膜的铁丝框ABCD(图2-1-5)。长为2αl的力作
用在BC边上。要使BC移动距离△x,则外力F作的功为
W=F△x=2αl△x=α△S。
式中α为表面张力系数,α指表面上单位长度直线两侧液面的相互拉力,△S指BC移动中液膜两个表面面积的总变化。外力克服表面张力的功转变为液膜的表面能。
由此可见,作功是系统与外界相互作用的一种方式,也是两者的能量相互交换的一种方式。这种能量交换的方式是通过宏观的有规则运动来完成的。我们把机械功、电磁功等统称为宏观功。
2.1.3、热力学第一定律
当系统与外界间的相互作用既有做功又有热传递两种方式时,设系统在初态的内能
E1,经历一过程变为末态的内能E2,令EE2E1。在这一过程中系统从外界吸收
的热量为Q,外界对系统做功为W,则△E=W+Q。式中各量是代数量,有正负之分。系高中物理竞赛热学教程第二讲热力学第一定律
统吸热Q>0,系统放热Q<0;外界做功W>0,系统做功W<0;内能增加
△E>0,内能减少△E<0。热力学第一定律是普遍的能量转化和守恒定律在热现象中的具体表现。
2.1.4、热量
当一个热力学系统与温度较高的外界热接触时,热力学系统的温度会升高,其内能增加,状态发生了变化。在这个状态变化的过程中,是外界把一部分内能传递给了该系统,我们就说系统从外界吸收了热量。如果系统与外界没有通过功来交换能量,系统从外界吸收了多少热量,它的内能就增加多少。热量是过程量。
做功和传递热量都可以使系统的内能发生变化,但它们本质上是有区别的,做功是通过物体的宏观位移来完成的,是通过有规则的运动与系统内分子无规则运动之间的转换,从而使系统的内能有所改变;传递热量是通过分子之间的相互作用来完成的,是系统外物体分子无规则运动与系统内分子无规则运动之间的传递,从而使系统的内能有所改变。为了区别起见,我们把热量传递叫做微观功。
2.1.5、气体的自由膨胀
气体向真空的膨胀过程称为气体的自由膨胀。气体自由膨胀时,没有外界阻力,所以外界不对气体做功W=0;由于过程进行很快,气体来不及与外界交换热量,可看成是绝热过程Q=0;根据热力学第一定律可知,气体绝热自由膨胀后其内能不变,即△E=0。
如果是理想气体自由膨胀,其内能不变,气体温度也不会变化,即△T=0;如果是离子气体自由膨胀,虽内能不变,但分子的平均斥力势能会随着体积的增大而减小,分子的平均平动动能会增加,从而气体温度会升高,即△T>0;如果是存在分子引力的气体自由膨胀后,其内能不变,但平均分子引力势能会增大,分子平均平动动能会减小,气体温度会降低,即△T<0。
例1、绝热容器A经一阀门与另一容积比A的容积大得多的绝热容器B相连。开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B中气体的压强是A中的两倍。现将阀门缓慢打开,直至压强相等时关闭。问此时容器A中气体的温度为多少?假设在打开到关闭阀门的过程中处在A中的气体与处在B中的气体之间无热交换。已知每摩尔该气体的内能为E=2.5RT。
分析:因为B容器的容积远大于A的容积,所以在题述的过程中,B中气体的压强和温度均视为不变。B容器内部分气体进入A容器,根据题设,A容器内气体是个绝热过程。外界(B容器的剩余气体)对A气体做功等于其内能的增量,从而求出A气体的最终温度。
解:设气体的摩尔质量为M,A容器的体积V,打开阀门前,气体质量为m,压强为p,温度为T。打开阀门又关闭后,A中气体压强为2p,温度为T,质量为m,则有
""mmRT2pVRTMM,
MpV21mmm()RTT,设这些气体处在B容器中时所占进入A气体质量pV高中物理竞赛热学教程第二讲热力学第一定律
mT1RT()V2MpT2。为把这些气体压入A容器,B容器中其他气体对这体积为
2TW2PVpV(1)T些气体做的功为。A中气体内能的变化
m5RE(TT)M2。根据热力学第一定律有WE
2TTpV(1)5pV(1)TTT353K
V例2、一根长为76cm的玻璃管,上端封闭,插入水银中。水银充满管子的一部分。封闭体积内有空气1.010moI,如图2-1-6所示,大气压为
11C20.5JmoIKV76cmHg。空气的摩尔定容热容量,当玻
376cm璃管温度降低10℃时,求封闭管内空气损失的热量。
分析:取封闭在管内的空气为研究对象,为求出空气在降温过
图2-1-6程中的放热,关键是确定空气在降温过程中遵循的过程方程。由于
管内空气压强p等于大气压强与管内水银柱压强之差,因管长刚好
76cm,故P与空气柱高度成正比,即封闭气体的压强与其体积成正比。随着温度降低,管内水银柱上升,空气的压强与体积均减小,但仍保持正比关系。
解:设在降温过程中管内封闭空气柱的高度为h,水银柱高度为h,则hh76cm。管内封闭空气的压强为
pP0ghgh
式中ρ为水银密度,上式表明,在降温过程中,空气的压强p与空气柱高度h成正比,因管粗细均匀,故p与空气体积V成正比,即p∝V
这就是管内封闭空气在降温过程中所遵循的过程方程。
空气在此过程中的摩尔热容量
CCV1R2。
Q放Q吸nCT
1103(20.58.31)(10)2
0.247J
本题也可直接由热力学第一定律求解,关键要求得空气膨胀做功。由题给数据,可分析得空气对水银柱做功是线性力做功的情形。
2.2热力学第一定律对理想气体的应用
2.2.1、等容过程高中物理竞赛热学教程第二讲热力学第一定律
P气体等容变化时,有T恒量,而且外界对气体做功WpV0。根据热力学
第一定律有△E=Q。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。
iVp2
QEiCV()vRTT2。式中
QEnCVT2.2.1、等压过程
VT气体在等压过程中,有恒量,如容器中的活塞在大气环境中无摩擦地自由移动。
根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量Q,一部分用来增加
内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体温度降低所减少的内能,都转化为向外放出的热量。且有
WpVnRTQnCpT
ipV2CCCvR。该式表明:1mol
定压摩尔热容量p与定容摩尔热容量CV的关系有pEnCvT理想气体等压升高1K比等容升高1k要多吸热8.31J,这是因为1mol理想气体等压膨胀温度升高1K时要对外做功8.31J的缘故。
2.2.3、等温过程
气体在等温过程中,有pV=恒量。例如,气体在恒温装置内或者与大热源想接触时所发生的变化。
理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即△E=0,因此有Q=-W。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。
2.2.4、绝热过程
气体始终不与外界交换热量的过程称之为绝热过程,即Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝热过程。
pV理想气体发生绝热变化时,p、V、T三量会同时发生变化,仍遵循T恒量。根据
热力学第一定律,因Q=0,有
WEnCvTi(p2V2p1V1)2
这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度高中物理竞赛热学教程第二讲热力学第一定律
升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。
例:0.020kg的氦气温度由17℃升高到27℃。若在升温过程中,①体积保持不变,②压强保持不变;③不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外界对气体做的功。
气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为:
EnCvT51.58.3110623J
①①等容过程中W0,QE623J
②②在等压过程中QnCPTn(CVR)T
52.58.31101.039103JWEQ416J
③③在绝热过程中Q0,WE623J
11mol温度为27℃的氦气,以100ms的定向速度注入体积为15L的真空容器中,
容器四周绝热。求平衡后的气体压强。
平衡后的气体压强包括两部分:其一是温度27℃,体积15L的2mol氦气的压强其二是定向运动转向为热运动使气体温度升高△T所导致的附加压强△p。即有
p0;
pp0pnRRTT0nVV
氦气定向运动的动能完全转化为气体内能的增量:
123mvnRT22
RT0v2pnM535(3.3101.710)P3.310PaV3Va∴
2.2.5、其他过程
理想气体的其他过程,可以灵活地运用下列关系处理问题。气态方程:pVnRT
热力学第一定律:EWQnCVT功:W=±(-V图中过程曲线下面积)
过程方程:由过程曲线的几何关系找出过程的P~V关系式。若某理想气体经历V-T图中的双曲线过程,其过程方程为:
2pVCVT=C或者
2.2.6、绝热过程的方程
绝热过程的状态方程是
P1V1uPV2u其中uCp/Cv高中物理竞赛热学教程第二讲热力学第一定律
2.2.7、循环过程
系统由某一状态出发,经历一系列过程又回到原来状态的过程,称为循环过程。热机循环过程在P-V图上是一根顺时针绕向的闭合曲线PB(如图2-2-1)。系统经过循环过程回到原来状态,因此△E=0。由图可见,在ABC过程中,系统对外界作正功,
在CDA过程中,外界对系统作正功。在热机循环中,系统对外界所作的总功:
CDOMNVW(P-V图中循环曲线所包围的面积)而且由热
力学第一定律可知:在整个循环中系统绕从外界吸收的热量总和Q1,必然大于放出的热量总和Q2,而且
图2-2-1
Q1Q2W
热机效率表示吸收来的热量有多少转化为有用的功,是热机性能的重要标志之一,效率的定义为
QW12Q1Q1<1
例1一台四冲程内燃机的压缩比r=9.5,热机
抽出的空气和气体燃料的温度为
27℃,在larm=10KPa压强下的体积为V0,如图2-2-2所示,从1→2是绝热压缩过程;2→3混合气体燃爆,压强加倍;从3→4活塞外推,气
35032041V00rV0体绝热膨胀至体积9.5V0;这是排气阀门打开,压图2-2-2强回到初始值larm(压缩比是气缸最大与最小体积
比,γ是比热容比)。(1)确定状态1、2、3、4的压强和温度;(2)求此循环的热效率。
分析:本题为实际热机的等容加热循环奥托循环。其热效率取决于压缩比。
r1解:对于绝热过程,有pV恒量,结合状态方程,有TV恒量。
(1)状态1,p11atm,T1300K
T2V01T1(rV0)1
得T23002.461738.3K,p223.38atm在状态3,p32p246.76atm,T32T21476.6K
1T(V)T3V040用绝热过程计算状态4,由
得T4600K,p42atm。
1V(2)热效率公式中商的分母是2→3过程中的吸热,这热量是在这一过程中燃烧燃料所获得的。因为在这一过程中体积不变,不做功,所以吸收的热量等于气体内能的增加,高中物理竞赛热学教程第二讲热力学第一定律
即CVm(T3T2),转化为功的有用能量是2→3过程吸热与4→1过程放热之差:
CVm(T3T1)CVm(T4T1)热效率为:
CVm(T1T3T2T4)TT141CVm(T3T2)T3T2
1111TVTVTVTV44331122绝热过程有:,因为V4V1,V2V3
T4T3TT1V111(2)1()1r1T2,而T2V1r故T1T2,11r因此。
热效率只依赖于压缩比,η=59.34%,实际效率只是上述结果的一半稍大些,因为大量的
热量耗散了,没有参与循环。
2-3热力学第二定律
2.3.1、卡诺循环
物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程为循环过程,简称循环。在P-V图上,物质系统的循环过程用一个闭合的曲线表示。经历一个循环,回到初始状态时,内能不变。利用物质系统(称为工作物)持续不断地把热转换为功的装置叫做热机。在循环过程中,使工作物从膨胀作功以后的状态,再回到初始状态,周而复始进行下去,并且必而使工作物在返回初始状态的过程中,外界压缩工作物所作的功少于工作物在膨胀时对外所做的功,这样才能使工作物对外做功。获得低温装置的致冷机也是利用工作物的
p循环过程来工作的,不过它的运行方向与热机中
ap1工作物的循环过程相反。
卡诺循环是在两个温度恒定的热源之间工作
的循环过程。我们来讨论由平衡过程组成的卡诺bp2T1p4循环,工作物与温度为T1的高温热源接触是等温
dcpT23膨胀过程。同样,与温度为T2的低温热源接触而0放热是等温压缩过程。因为工作物只与两个热源V1V4V2V3V交换能量,所以当工作物脱离两热源时所进行的图2-3-1
过程,必然是绝热的平衡过程。如图2-3-1所示,
在理想气体卡诺循环的P-V图上,曲线ab和cd表示温度为T1和T2的两条等温线,曲线bc和da是两条绝热线。我们先讨论以状态a为始点,沿闭合曲线abcda所作的循环过程。高中物理竞赛热学教程第二讲热力学第一定律
在abc的膨胀过程中,气体对外做功W1是曲线abc下面的面积,在cda的压缩过程中,外界对气体做功W2是曲线cda下面的面积。气体对外所做的净功W(W1W2)就是闭
合曲线abcda所围面积,气体在等温膨胀过程ab中,从高温热源吸热
Q1nRTInV2V1,
气体在等温压缩过程cd中,向低温热源放热
Q2nRT2InV3V4。应用绝热方程
T1V2r1T2V3r1和T1V1r1V2V3r1T2V4得V1V4
所以
Q2nRT2InV3VnRT2In2V4V1
Q1Q2T1T2
卡诺热机的效率
TWQ1Q212Q1Q1T1
我们再讨论理想气体以状态a为始点,沿闭合曲线adcba所分的循环过程。显然,气体将从低温热源吸取热量Q2,又接受外界对气体所作的功W,向高温热源传热
Q1WQ2。由于循环从低温热源吸热,可导致低热源的温度降得更快,这就是致冷
机可以致冷的原理。致冷机的功效常用从低温热源中吸热Q2和所消耗的外功W的比值来
量度,称为致冷系数,即
有一卡诺致冷机,从温度为-10℃的冷藏室吸取热量,而向温度为20℃的物体放出热量。设该致冷机所耗功率为15kW,问每分钟从冷藏室吸取的热量是多少?
Q2Q2T2WQ1Q2,对卡诺致冷机而言,T1T2。
T2263T1T230。每分钟作功
令T1293K,T2263K,则
6W15103609105J,所以每分钟从冷藏室中吸热Q2W7.8910J。
2.3.2、热力学第二定律
表述1:不可能制成一种循环动作的热机,只从一个热源吸取热量,使之全部变为有用的功,而其他物体不发生任何变化。
表述2:热量不可能自动地从低温物体转向高温物体。
在表述1中,我们要特别注意“循环动作”几个字,如果工作物进行的不是循环过程,如气体作等温膨胀,那么气体只使一个热源冷却作功而不放出热量便是可能的。该高中物理竞赛热学教程第二讲热力学第一定律
叙述反映了热功转换的一种特殊规律,并且表述1与表述2具有等价性。我们用反证法来证明两者的等价性。
假设表述1不成立,亦即允许有一循环E
p可以从高温热源取得热量Q1,并全部转化为功
W。这样我们再利用一个逆卡诺循环口接受E所作功W(=Q1),使它从低温热源T2取得热量Q2,输出热量Q1Q2给高温热源。现在把这两个循环总的看成一部复合致冷机,其总的结果是,外界没有对他做功而它却把热量Q2从低温热
ⅠⅢⅡ源传给了高温热源。这就说明,如果表述1不图2-3-2成立,则表述2也不成立。反之,也可以证明如果表述2不成立,则表述1也必然不成立。
试证明在P-V图上两条绝热线不能相交。
假定两条绝热线Ⅰ与Ⅱ在P-V图上相交于一点A,如图2-3-2所示。现在,在图上再画一等温线Ⅲ,使它与两条绝热线组成一个循环。这个循环只有一个单热源,它把吸收的热量全部转变为功,即η=1,并使周围没有变化。显然,这是违反热力学第二定律的,因此两条绝热线不能相交。
2.3.3、卡诺定理
设有一过程,使物体从状态A变到状态B。对它来说,如果存在另一过程,它不仅使物体进行反向变化,从状态B回复到状态A,而且当物体回复到状态A时,周围一切也都各自回复到原状,则从状态A进行到状态B的过程是个可逆过程。反之,如对于某一过程,不论经过怎样复杂曲折的方法都不能使物体和外界恢复到原来状态而不引起其他变化,则此过程就是不可逆过程。
气体迅速膨胀是不可逆过程。气缸中气体迅速膨胀时,活塞附近气体的压强小于气体内部的压强。设气体内部的压强为P,气体迅速膨胀微小体积△V,则气体所作的功W,小于p△V。然后,将气体压回原来体积,活塞附近气体的压强不能小于气体内部的压强,外界所作的功W2不能小于p△V。因此,迅速膨胀后,我们虽然可以将气体压缩,使它回到原来状态,但外界多作功W2W1;功将增加气体的内能,而后以热量形式释放。根据热力学第二定律,我们不能通过循环过程再将这部分热量全部变为功;所以气体迅速膨胀的过程是不可逆过程。只有当气体膨胀非常缓慢,活塞附近的压强非常接近于气体内部的压强p时,气体膨胀微小体积△V所作的功恰好等于p△V,那么我们才能非常缓慢地对气体作功p△V,将气体压回原来体积。所以,只有非常缓慢的亦即平衡的膨胀过程,才是可逆的膨胀过程。同理,只有非常缓慢的亦即平衡的压缩过程,才是可逆的压缩过程。在热力学中,过程的可逆与否和系统所经历的中间状态是否平衡密切相关。实际的一切过程都是不可逆过程。
卡诺循环中每个过程都是平衡过程,所以卡诺循环是理想的可逆循环卡诺定理指出:(1)在同样高温(温度为T1)和低温(温度为T2)之间工作的一切可逆机,不论用什么工作物,
V高中物理竞赛热学教程第二讲热力学第一定律
(1效率都等于于可逆机,即
T2)T1。(2)在同样高低温度热源之间工作的一切不可逆机的效率,不可能高
≤1T2T1。
下面我们给予证明。
设高温热源T1,低温热源T2,一卡诺理想可逆机E与另一可逆机E,在此两热源之间工作,设法调节使两热机可作相等的功W。现使两机结合,由可逆机E从高温热源吸
WQ1。可逆机E所作功W恰好提供给QQQ1W,其效率热1向低温热源放热2卡诺机E,而使E逆向进行,从低温热源吸热Q2Q1W,向高温热源放热Q1,其效
WQ1。我们用反证法,先设>。由此得Q1<Q1,即Q2<Q2。当两机一率为
起运行时,视他们为一部复合机,结果成为外界没有对这复合机作功,而复合机却能将热量Q2Q2Q1Q1从低温热源送至高温热源,违反了热力学第二定律。所以>不可能。反之,使卡诺机E正向运行,而使可逆机E逆行运行,则又可证明>为不可能,即只有=才成立,也就是说在相同的T1和T2两温度的高低温热源间工作的一
T2T1。切可逆机,其效率均为
如果用一台不可逆机E来代替上面所说的E。按同样方法可以证明>为不可能,即只有≥。由于E是不可逆机,因此无法证明≤。所以结论是≥,
1即在相同T1和T2的两温度的高低温热源间工作的不可逆机,它的效率不可能大于可逆机的效率。
2.3.4、热力学第二定律的统计意义
对于热量传递,我们知道,高温物体分子的平均动能比低温物体分子的平均动能要大,两物体相接触时,能量从高温物体传到低温物体的概率显然比反向传递的概率大得多。对于热功转换,功转化为热是在外力作用下宏观物体的有规则定向运动转变为分子无规则运动的过程,这种转换的概率大,反之,热转化为功则是分子的无规则运动转变为宏观物体的有规则运动的过程,这种转化的概率小。所以,热力学第二定律在本质上是一条统计性的规律。一般说来,一个不受外界影响的封闭系统,其内部发生的过程,总是由概率小的状态向概率大的状态进行,由包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行,这是热力学第二定律统计意义之所在。
例1、某空调器按可逆卡诺循环运转,其中的作功装置连续工作时所提供的功率P0。选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库
0.3P0T2AP0T1maxT2T2A
TT0.3(TT)311.26K38.26C。1max212解得T1T2PQQ(3)冬天,空调器为热机,单位时间从室外吸热1,向室内放热2,空调器连续工作,功率为0,有
Q1Q2Q2Q1P0,T1T2,由热平衡方程得:
T2A(T2T1)P0T2T1
PT1T20T2T2(T1maxT2)2T2T1max274.74KA
=1.74C
若空调器连续工作,则当冬天室外温度最低为1.74℃,仍可使室内维持在20℃。
选校网高考频道专业大全历年分数线上万张大学图片大学视频院校库(按ctrl点击打开)
选校网专业大全历年分数线上万张大学图片大学视频院校库
友情提示:本文中关于《高一物理力学知识点总结》给出的范例仅供您参考拓展思维使用,高一物理力学知识点总结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《高一物理力学知识点总结》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/675000.html
- 上一篇:高中物理基础知识教学的总结与反
- 下一篇:高中物理选修3-2知识点汇总