数学必修5复习小结
远东二中导学稿★高二数学必修五★知识复习小结专稿“解三角形”复习与小结
1、三角函数知识储备:
(1)任意角三角函数的定义①三角函数定义②定义域
③三角函数值在各个象限的符号(2)同角三角函数间的基本关系式:平方关系商数关系倒数关系(3)诱导公式
(4)正、余弦函数与正切函数的关系
(5)两角和与差的正弦,余弦、正切公式(6)二倍角的正弦、余弦、正切公式(7)半角公式(8)降幂公式(9)辅助角公式2、正余弦定理及应用解斜三角形时可用的定理公式余弦定理222a=b+c-2bccosA222b=a+c-2accosB222c=b+a-2bacosC正弦定理三角形面积公式适用类型(1)已知三边(2)已知两边及其夹角备注类型(1)(2)有解时只有一解备注:1、判断三角形解的情况的方法2、正余弦定理的作用“不等式”小结复习1、不等式解法(1)一元二次不等式解法(图像法):(2)绝对值不等式解法:(3)分式不等式解法:
(4)高次不等式的解法(穿线法):(5)含参不等式的解法(分类讨论):2、重要不等式:
22如果a、b∈R,那么a+b≥2ab(当且仅当a=b时取“=”号)
3、基本不等式:
代数意义:几何意义:数列意义:
4、四个平均数大小关系:5、利用基本不等式求最值:
x、y都是正数时
(1)若x+y=s(和为定值),则当_______________时,积__________________.(2)若xy=p(积为定值),则当_______________时,和__________________.(3)利用基本不等式求最值时必须满足三个条件:一正二定三相等【典型题】导学稿第31期,认真领会5、图解法解决简单的线性规划问题的基本步骤:【关键】体会(1)平行直线系中纵截距与目标函数的关系;(2)uyb的几何意义:;xa22(3)w(xa)(yb)的几何意义:。数列复习与小结
一、方法总结
1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想.
2.等差、等比数列中,a1、an、n、d(q)、Sn“知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法.
3.求等比数列的前n项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想.
4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,裂项法,累加法,等价转化等.
二、等差数列1相关公式:
(1)定义:an1and(n1,d为常数)
(2)通项公式:①ana1(n1)d【推导方法】②
(2)前n项和公式:
①Snn(a1an)n(n1)d【推导方法】②Snna1222.等差数列{an}的一些性质
(1)对于任意正整数n,都有an1ana2a1(2)对于任意的整数p,q,r,s,如果pqrs,那么apaqaras(3)对于任意的正整数n>1,有2anan1an1(4)等差中项:
(5)等距和性:Sn是等差数列an的前n项和,则Sk,S2kSk,S3kS2k仍成等差数列,即S3m3(S2mSm)(6)对于任意的非零实数b,数列{ban}是等差数列,则{an}是等差数列(7)已知{bn}是等差数列,则{anbn}也是等差数列(8){a2n},{a2n1},{a3n},{a3n1},{a3n2}等都是等差数列3.等差数列的判定方法:
(1)定义法:(2)等差中项法:
(3)通项公式法:(4)前n项和法:三、等比数列1相关公式:
(1)定义:
an1q(n1,q0)an(2)通项公式:①ana1qn1【推导方法】
②anamqnmq1na1(3)前n项和公式:Sna1(1qn)q11q2.等比数列{an}的一些性质(1)对于任意的正整数n,均有
an1a2ana1(2)对于任意的正整数p,q,r,s,如果pqrs,则apaqaras(3)对于任意的正整数n>1,有anan1an1(4)等比中项:(5)等距和性:Sn是等比数列an的前n项和,
①当q=-1且k为偶数时,Sk,S2kSk,S3kS2k不是等比数列.②当q≠-1或k为奇数时,Sk,S2kSk,S3kS2k仍成等比数列2(6)对于任意的非零实数b,{ban}也是等比数列(7)已知{bn}是等比数列,则{anbn}也是等比数列(8)如果an0,则{logaan}是等差数列(9)数列{logaan}是等差数列,则{an}是等比数列(10){a2n},{a2n1},{a3n},{a3n1},{a3n2}等都是等比数列3.等比数列的判定方法:
(1)定义法:(2)等差中项法:
(3)通项公式法:(4)前n项和法:
四、常见数列求和方法(1)公式法:(2)分组求和法:(3)裂项相消法:①
111
n(n1)nn1②
(4)错位相减法
扩展阅读:高中数学必修5知识点总结(精品)
必修5知识点总结
1、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外接圆的半径,则有
asinbsincsinC2R.
2、正弦定理的变形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④
a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;
csinCabcsinsinsinCsin.
(正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。)
⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况)如:在三角形ABC中,已知a、b、A(A为锐角)求B。具体的做法是:数形结合思想画出图:法一:把a扰着C点旋转,看所得轨迹以AD有无交点:当无交点则B无解、当有一个交点则B有一解、当有两个交点则B有两个解。法二:是算出CD=bsinA,看a的情况:当a但不能到达,在岸边选取相距3千米的C、D两点,并测得∠ACB=75O,∠BCD=45O,∠ADC=30O,
∠ADB=45(A、B、C、D在同一平面内),求两目标A、B之间的距离。本题解答过程略
附:三角形的五个“心”;重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.7、数列:按照一定顺序排列着的一列数.8、数列的项:数列中的每一个数.9、有穷数列:项数有限的数列.10、无穷数列:项数无限的数列.
11、递增数列:从第2项起,每一项都不小于它的前一项的数列(即:an+1>an).12、递减数列:从第2项起,每一项都不大于它的前一项的数列(即:an+1④nana1d1;⑤danamnm.
21、若an是等差数列,且mnpq(m、n、p、q*),则amanapaq;若an是等差数列,且2npq(n、p、q*),则2anapaq.22、等差数列的前n项和的公式:①Snna1an2;②Snna1nn12d.③
sna1a2an
23、等差数列的前n项和的性质:①若项数为2nn*,则S2nnanan1,且S偶S奇nd,
S奇S偶anan1.
S奇S偶nn1②若项数为2n1n*,则S2n12n1an,且S奇S偶an,S偶n1an).
(其中S奇nan,
24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:
an1anq(注:①等比数列中不会出现值为0的项;②同号位上
的值同号)
注:看数列是不是等比数列有以下四种方法:
2①anan1q(n2,q为常数,且0)②anan1an1(n2,anan1an10)
③ancqn(c,q为非零常数).
④正数列{an}成等比的充要条件是数列{logxan}(x1)成等比数列.
25、在a与b中间插入一个数G,使a,G,b成等比数列,则G称为a与b的等比中项.若Gab,
22则称G为a与b的等比中项.(注:由Gab不能得出a,G,b成等比,由a,G,bGab)
2n126、若等比数列an的首项是a1,公比是q,则ana1q.
27、通项公式的变形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.
*28、若an是等比数列,且mnpq(m、n、p、q),则amanapaq;若an是等比
数列,且2npq(n、p、q*),则anapaq.
na1q129、等比数列an的前n项和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an
30、对任意的数列{an}的前n项和Sn与通项an的关系:ans1a1(n1)snsn1(n2)
[注]:①ana1n1dnda1d(d可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d不为0,则是等差数列充分条件).②等差{an}前n项和Sndddd22AnBnna1n→
222可以为零也可不为零→为等差的充要条件→若
为零,则是等差数列的充分条件;若d不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)..附:几种常见的数列的思想方法:⑴等差数列的前n项和为Sn,在d0时,有最大值.如何确定使Sn取最大值时的n值,有两种方法:
d2n2一是求使an0,an10,成立的n值;二是由Sn数列通项公式、求和公式与函数对应关系如下:数列等差数列等比数列数列等差数列前n项和公式通项公式(a1d2)n利用二次函数的性质求n的值.
对应函数(时为一次函数)(指数型函数)对应函数(时为二次函数)等比数列(指数型函数)我们用函数的观点揭开了数列神秘的“面纱”,将数列的通项公式以及前n项和看成是关于n的函数,为我们解决数列有关问题提供了非常有益的启示。例题:1、等差数列分析:因为
中,,则.
是等差数列,所以是关于n的一次函数,
一次函数图像是一条直线,则(n,m),(m,n),(m+n,)三点共线,
所以利用每两点形成直线斜率相等,即,得=0(图像如上),这里利用等差数
列通项公式与一次函数的对应关系,并结合图像,直观、简洁。例题:2、等差数列
中,
,前n项和为
,若
,n为何值时
最大?
分析:等差数列前n项和可以看成关于n的二次函数=,
是抛物线=上的离散点,根据题意,,
则因为欲求最大。
最大值,故其对应二次函数图像开口向下,并且对称轴为,即当时,
例题:3递增数列,对任意正整数n,
递增得到:
恒成立,设
恒成立,求
恒成立,即,则只需求出。
,因为是递的最大值即
分析:构造一次函数,由数列恒成立,所以可,显然
有最大值
对一切
对于一切
,所以看成函数
的取值范围是:
构造二次函数,,它的定义域是
增数列,即函数为递增函数,单调增区间为,抛物线对称轴,因为函数f(x)
为离散函数,要函数单调递增,就看动轴与已知区间的位置。从对应图像上看,对称轴的左侧
在也可以(如图),因为此时B点比A点高。于是,
,得
⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n项和可依照等比数列前
n项和的推倒导方法:错位相减求和.例如:112,314,...(2n1)12n,...
⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,
公差是两个数列公差d1,d2的最小公倍数.
2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证anan1(anan1)为同一常数。(2)通项公式法。(3)中项公式法:验证
2an1anan2(an1anan2)nN都成立。
2am03.在等差数列{an}中,有关Sn的最值问题:(1)当a1>0,d把①式两边同乘2后得
2sn=122232n2234n1②
用①-②,即:
123nsn=122232n2①
2sn=122232n2234n1②
得sn12222n22(12)12n1n23nn1n2n1
22n2n1n1(1n)22∴sn(n1)2n12
4.倒序相加法:类似于等差数列前n项和公式的推导方法.5.常用结论1):1+2+3+...+n=
n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)
1n(n1)1n1n1
1n(n2)1pq111()2nn21qp1p1q6)()(pq)
31、ab0ab;ab0ab;ab0ab.
32、不等式的性质:①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;
nd0acabdb0a⑥;⑦
⑧ab0
nnbn,n1;
anbn,n1.
33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.34、含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法
穿根法(零点分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)
解法:①将不等式化为a0(x-x1)(x-x2)(x-xm)>0(0”,则找“线”在x轴上方的区间;若不等式是“
由图可看出不等式x23x26x80的解集为:
x|2x1,或x4
(x1)(x2)(x5)(x6)(x4)0的解集。
例题:求解不等式
解:略
一元二次不等式的求解:
特例①一元一次不等式ax>b解的讨论;
②一元二次不等式ax+bx+c>0(a>0)解的讨论.
二次函数yax22
000bxc有两相异实根x1,x2(x1x2)(a0)的图象一元二次方程ax2有两相等实根x1x2b2abxc0a0的根2无实根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2对于a0(或
f(x)g(x)(2)转化为整式不等式(组)
1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)
f(x)例题:求解不等式:解:略例题:求不等式
xx11
1的解集。
3.含绝对值不等式的解法:基本形式:
①型如:|x|<a(a>0)的不等式的解集为:x|axa②型如:|x|>a(a>0)的不等式的解集为:x|xa,或xa变型:
其中-c3x23x23x2(x2)(x3)10xR③当x2时,(去绝对值符号)原不等式化为:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集为:x|112x9(注:是把①②③的解集并在一起)2y函数图像法:
令f(x)|x2||x3|
2x1(x3)则有:f(x)5(3x2)
2x1(x2)f(x)=1051123o292x在直角坐标系中作出此分段函数及f(x)10的图像如图11292由图像可知原不等式的解集为:x|x4.一元二次方程ax2+bx+c=0(a>0)的实根的分布常借助二次函数图像来分析:y设ax2+bx+c=0的两根为、,f(x)=ax2+bx+c,那么:0①若两根都大于0,即0,0,则有0
0o对称轴x=b2ax
0b0②若两根都小于0,即0,0,则有2af(0)0y
11对称轴x=b2aox
③若两根有一根小于0一根大于0,即0,则有f(0)0
④若两根在两实数m,n之间,即mn,
0bnm则有2af(m)0of(n)0yoxymX=b2anx⑤若两个根在三个实数之间,即mtn,
yf(m)0则有f(t)0
f(n)0
常由根的分布情况来求解出现在a、b、c位置上的参数
例如:若方程x2(m1)xm2m30有两个正实数根,求m的取值范围。
4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有两个正实数根时,m3。
又如:方程xxm10的一根大于1,另一根小于1,求m的范围。
55220m(1)4(m1)02解:因为有两个不同的根,所以由21m122f(1)011m101m12235、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式.
36、二元一次不等式组:由几个二元一次不等式组成的不等式组.
37、二元一次不等式(组)的解集:满足二元一次不等式组的x和y的取值构成有序数对x,y,所有这样的有序数对x,y构成的集合.
38、在平面直角坐标系中,已知直线xyC0,坐标平面内的点x0,y0.①若0,x0y0C0,则点x0,y0在直线xyC0的上方.②若0,x0y0C0,则点x0,y0在直线xyC0的下方.39、在平面直角坐标系中,已知直线xyC0.(一)由B确定:
①若0,则xyC0表示直线xyC0上方的区域;xyC0表示直线
xyC0下方的区域.
②若0,则xyC0表示直线xyC0下方的区域;xyC0表示直线
xyC0上方的区域.
(二)由A的符号来确定:
先把x的系数A化为正后,看不等号方向:
①若是“>”号,则xyC0所表示的区域为直线l:xyC0的右边部分。②若是“线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.可行解:满足线性约束条件的解x,y.可行域:所有可行解组成的集合.
最优解:使目标函数取得最大值或最小值的可行解.41、设a、b是两个正数,则
ab2称为正数a、b的算术平均数,ab称为正数a、b的几何平均数.
ab2ab.
42、均值不等式定理:若a0,b0,则ab2ab,即
43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③
abab2a0,b0;
2④
ab222ab2a,bR.
44、极值定理:设x、y都为正数,则有:
⑴若xys(和为定值),则当xy时,积xy取得最大值
s42.⑵若xyp(积为定值),则当xy时,和xy取得最小值2例题:已知x解:∵x5454p.
14x5,求函数f(x)4x2的最大值。
,∴4x50
由原式可以化为:
f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132
当54x154x2,即(54x)1x1,或x32(舍去)时取到“=”号
也就是说当x1时有f(x)max2
友情提示:本文中关于《数学必修5复习小结》给出的范例仅供您参考拓展思维使用,数学必修5复习小结:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《数学必修5复习小结》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/741802.html
- 上一篇:人教版数学必修五知识点总结
- 下一篇:高一数学必修1第一章知识点总结