点击查看更多:小学五年级知识点汇总
小学五年级下册数学知识点汇总1
知识点归纳整理
1、轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
2、轴对称图形的性质
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3、轴对称的性质
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4、轴对称图形的作用
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5、因数
整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6、自然数的因数(举例)
6的因数有:1和6,2和3。
10的因数有:1和10,2和5。
15的因数有:1和15,3和5。
25的因数有:1和25,5。
7、因数的分类
除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8、倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9、完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10、偶数:整数中,能够被2整除的数,叫做偶数。
11、奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数
12、奇数偶数的性质
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。
13、质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
14、合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
15、长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
16、长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
17、长方体的特征:
(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(2)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
18、长方体的表面积
因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:
S = 2ab + 2bc+ 2ca
= 2 ( ab + bc + ca)
19、长方体的体积
长方体的体积=长×宽×高
设一个长方体的长、宽、高分别为a、b、c,则它的体积V:
V = abc=Sh
20、长方体的棱长
长方体的棱长之和=(长+宽+高)×4
长方体棱长字母公式C=4(a+b+c)
相对的棱长长度相等
长方体棱长分为3组,每组4条棱。每一组的棱长度相等
21、正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。
22、正方体的特征
(1)有6个面,每个面完全相同。
(2)有8个顶点。
(3)有12条棱,每条棱长度相等。
(4)相邻的两条棱互相(相互)垂直。
23、正方体的表面积:
因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6
设一个正方体的棱长为a,则它的表面积S:
S=6×a×a或等于S=6a2
24、正方体的体积
正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:
V=a×a×a
25、正方体的展开图
正方体的平面展开图一共有11种。
26、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
27、分数分类:分数可以分成:真分数,假分数,带分数,百分数
28、真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
29、假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
30、分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
31、约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分
32、公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
33、通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。
34、通分方法
(1)求出原来几个分数的分母的最小公倍数
(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数
35、公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数
36、分数加减法
(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。
(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。
37、统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
小学五年级下册数学知识点汇总2
一、旋转、平移
时针旋转1小时是30度
二、因数与倍数
1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。
2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。
3、奇数与偶数:
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
4、倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
5、质数与合数:
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
1既不是质数也不是合数。
6、奇数与偶数的运算规律
偶数+偶数=偶数
奇数+奇数=奇数
奇数+偶数=奇数
偶数-偶数=偶数
奇数-奇数=奇数
奇数-偶数=奇数
偶数个偶数相加是偶数, 奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
9、100以内的质数表:
2、 3、 5、 7、 11、 13、17、19
23、29、31、 37、 41、 43、47、53
59、61、67、71、 73、 79、83、89、97
三、长方体的认识、表面积、体积和容积
1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。
2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。
3.正方体是特殊的长方体。(长宽高都相等)
4.长方体的棱长总和=(长+宽+高)×4
5.正方体的棱长总和=棱长×12
6.长方体6个面的总面积叫作它的表面积。长方体相对的面的面积相等,前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽
7.长方体的表面积=(长×宽+长×高+宽×高)×2
8.正方体6个面的总面积叫作它的表面积,6个面的面积都相等。
9.正方体的表面积=棱长×棱长×6
10.物体所占空间的大小叫作物体的体积。常用的体积单位有:立方厘米,立方分米,立方米。
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方米=1000000立方厘米
11.容器所能容纳物体的体积叫作容器的容积。常用的容积单位有:升和毫升
1升=1立方分米 1毫升=1立方厘米
12.相邻的的体积单位之间的互化:
低级单位 高级单位
(大化小除于进率,小化大乘于进率)
13.计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。
14.长方体的体积=长×宽×高
15.正方体的体积=棱长×棱长×棱长
16.长方体(正方体)的体积=底面积×高
17.正方形 :周长=边长×4 C=4a 面积=边长×边长 S=a×a
长方形 :周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab
四、分数的意义和性质
1、分数单位:
把单位“1”平均分成若干份,表示其中一份的数叫分数单位,如:的分数单位是。
2、分数的除法则:
被除数÷除数 =
a ÷ b = (b≠0)
3、真分数:分子比分母小的分数叫做真分数。
4、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
5、带分数:把假分数写成整数和真分数的形式,叫做带分数。
6、带分数与假分数互化的方法:
带分数化假分数:用原来的分母作分母,用分母乘于整数部分加分子做分子。
假分数化带分数:用分子除以分母,当分子是分母的倍数时,能化成整数,商就是这个整数,分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。
7、分数的基本性质:
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
8、最大公因数:几个数公有的因数,叫做这几个数的因数数。公因数个数有限个。其中最大的一个叫做这几个数的最大公因数。
9、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
10、倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
11、互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
12、互质关系的两个数,最大公约数为1,最小公倍数为乘积。
13、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
14、约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
15、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
16、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
五、分数的加减法
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
六、统计1. 条形统计图能清楚地表示地各种数量的多少,并且方便进行比较。
2.扇形统计图能直观地表示出各种量分别占总量的百分之几。
3.折线统计图能直观地表示出数量的变化情况。
4.平均数=总数量÷总份数
5.把一组数据从小到大(或从大到小)排列,中间的数叫这组数据的中位数。
6.一组数据中出现次数最多的数叫这组数据的众数。
小学五年级下册数学知识点汇总3
第一部分:《分数乘法》
1、分数乘整数的意义:分数乘整数的意义同整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2、分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。
3、计算时,可以先约分再计算。
4、理解打折的含义。例如:九折,是指现价是原价的十分之九;九五折,是指现价是原价的百分之九十五。
5、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。计算结果要求是最简分数。
6、比较分数相乘的积与每一个乘数的大小。乘数乘小于1的数,积小于乘数;乘数乘等于1的数,积等于乘数;乘数乘大于1的数,积大于乘数;真分数相乘积小于任何一个乘数;真分数与假分数相乘积大于真分数小于假分数。
7、教材中一单元重点题目:P3试一试第1题,练一练第1题。P7折一折画图表示乘法算式,看到图能写出乘法算式。P10、11全部练习题。
第二部分:《分数除法》
1、倒数。 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。
2、1的倒数仍是1;0没有倒数。0没有倒数,是因为在分数中,0不能做分母。
3、一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
4、除以一个数(0除外)等于乘这个数的倒数。
5、比较商与被除数的大小。 除数小于1,商大于被除数;除数等于1。商等于被除数;除数大于1,商小于被除数。
6、三单元重点题目:P25:会用图表示除法算式,看到图能写出除法算式。P27的画一画:会用线段图表示除法算式。P30的第3、4题。P31、32所有题目。P34、35所有题目。
第三部分 《长方体》
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。在一个长方体中,相对的面完全相同,相对的棱长度相等。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
3、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
4、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。
5、长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4
长=棱长总和÷4-宽 -高 a=L÷4-b-h
宽=棱长总和÷4-长 -高 b=L÷4-a-h
高=棱长总和÷4-长 -宽 h=L÷4-a-b
正方体的棱长总和=棱长×12 L=a×12
正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)
正方体的表面积=棱长×棱长×6 S=a×a×6
7、知道长方体表面积求长或宽或高时,用方程解。
8、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长 V=a×a×a
10、长方体和正方体的体积还可以用底面积乘高来计算,V=Sh 。
10、冰箱的容积用“升”作单位;游泳池、水库存水量常用立方米做单位。
11、体积:物体所占空间的大小叫作物体的体积。 容积:容器所能容纳入体的体积叫做物体的容积。箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
12、常用的容积单位有升和毫升也可以写成L和ml。
比如 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升
13、体积单位换算
14、进率:1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
15、二单元重点题目:P15的第4题。P17的两个第1题。P19的第2,3,4,5题。P21的找规律共3道题。P22、23所有题目。
16、四单元重点题目:P42第2题。P45的第1,2,3,4题。P49的第5,7题。P51的第1,2,3题。P52、53所有题目。
第四部分:《分数的混合运算》
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同。先乘除后加减,有括号的先算括号里面的。最后结果是最简分数。
2、分数乘除法基本应用题解题方法:
(1)找准单位“1”,并在题目的文字下面标注。
(2)确定乘法或除法:已知单位“1”,用乘法,
未知单位“1”,用除法。
(3)对应量和分率:单位“1” × 对应分率 = 对应的量
对应的量÷ 对应分率 = 单位“1”的量
若用方程,一般设单位“1”为未知数。
3、五单元重点题目:P56例题中线段图、P58例题中线段图、P60例题中的线段图(会考用线段图分析应用题中的数量关系)。P59第5题。P60第3、4题。P62、63所有题目。
第五部分:《百分数》
1、百分数的意义。百分数表示一个数另一个数的百分之几。百分数也叫百分比、百分率。
2、小数化成百分数的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把分数化成百分数:可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数;也可以把分子分母同时乘一个数将其化成一百分之几的数,再写成百分数。
3、求一个数的百分之几是多少,方法同求一个数的几分之几是多少。
4、 百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。百分数化成小数时,要把百分号去掉,同时把小数点向左移动两位。
5、百分数应用题知识点归纳
(1)求一个数的百分之几是多少 一个数(单位“1”) ×百分率
(2)已知一个数的百分之几是多少,求这个数。 部分量÷百分率=一个数(单位“1”)
(3)求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等 a率=a的数量÷总量×100%
6、现价=原价×折扣 原价=现价÷折扣 折扣=现价÷原价×100%
5、六单元重点题目:P65练一练第1题。P68第1题。P72第1、5题。P73、74、75所有题目。P77、78所有题目。P80的试一试1,2,3,题。
第六部分《统计》
1、将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。
2、一组数据中出现次数最多的数称为这组数据的众数。
3、中位数的求法:将一组数据按大小的顺序排列,如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数。
4、众数:在一组数据中,出现次数最多的数,是这组数据的众数。 在一组数据中,众数可能不止一个,也可能没有众数。
5、 条形统计图 。优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 取一个单位长度表示数量的多少要根据具体情况而确定;
6、 折线统计图 。用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。 优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。
8、扇形统计图 。用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。 优点:很清楚地表示出各部分同总数之间的关系。
9、七单元重点题目:P85试一试。P87练一练。P89第2、3题。P90、91所有题目。
10、P93~96总复习所有题目。
点击查看更多:小学五年级知识点汇总
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《小学五年级下册数学知识点汇总》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/810014.html
- 上一篇:小学五年级下册数学知识点汇总3篇
- 下一篇:小学五年级上册英语知识点汇总