公文素材库 首页

初中数学函数总结

时间:2019-05-28 21:15:17 网站:公文素材库

初中数学函数总结

初中数学函数总结形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数。图象做法:1。带定系数2。描点3。连线图象是一条直线,一定经过坐标轴的原点性质:当k>0时,图象经过一,三象限,y随x的增大而增大当k0时,图象在一,三象限,在每个象限内,y随x的增大而减小,当k0,b>O,则图象过1,2,3象限k>0,b

函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减,函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减。当a>0时,开口向上,抛物线在y轴的上方(顶点在x轴上),并向上无限延伸;当a<0时,开口向下,抛物线在x轴下方(顶点在x轴上),并向下无限延伸。|a|越大,开口越小;|a|越小,开口越大。画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。二次函数解析式的几种形式:(1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0)。(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0)。(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c

=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。求抛物线的顶点、对称轴、最值的方法①配方法:将解析式化为y=a(x-h)2+k的形式,顶点坐标(h,k),对称轴为直线x=h,若a>0,y有最小值,当x=h时,y最小值=k,若a<0,y有最大值,当x=h时,y最大值=k。②公式法:直接利用顶点坐标公式(-,),求其顶点;对称轴是直线x=-,若a>0,y有最小值,当x=-时,y最小值=,若a<0,y有最大值,当x=-时,y最大值=。二次函数y=ax2+bx+c的图像的画法,因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴.(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等).(3)把上述五个点按从左到右的顺序用平滑曲线连结起.

扩展阅读:初中数学函数知识点归纳

学大教育

初中数学函数板块的知识点总结与归类学习方法

初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

一、一次函数

1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

k0时,y随x的增大而增大,直线一定过一、三象限(2)

k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2

当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。

(4)当b>0时直线与y轴交于原点上方;当b学大教育

(1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3)

k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。

P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数

1.定义:应注意的问题

(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线

3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育

表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育

一次函数图象和性质

【知识梳理】

1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的图象是经过(3.一次函数ykxb的图象与性质

图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而

【思想方法】数形结合

k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质

【知识梳理】

1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质

k的符号k>0yoxk<0yox

图像的大致位置经过象限性质

第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y=

k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4

x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB

函数学习方法学大教育

的面积为.

【思想方法】数形结合

二次函数图象和性质

【知识梳理】

1.二次函数ya(xh)2k的图像和性质

图象开口对称轴顶点坐标最值增减性

在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数

【思想方法】

1.常用解题方法设k法2.常用基本图形双直角

【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=

14,则tanB=______;(2)若cosA=,则tanB=______.255

函数学习方法学大教育

例题2.(1)已知:cosα=

23,则锐角α的取值范围是()A.0°

友情提示:本文中关于《初中数学函数总结》给出的范例仅供您参考拓展思维使用,初中数学函数总结:该篇文章建议您自主创作。

  来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。


初中数学函数总结
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/620930.html
相关阅读
最近更新
推荐专题