《鸡兔同笼》教学设计
教材分析
鸡兔同笼问题设置在数学广角中,其教学与常规课有所不同。区别之处在于要把数学思想方法贯穿始终,巧用素材,有效提升,培养学生的逻辑推理能力,为学生的终身发展奠定基础。
设计理念
《数学用书》中说道:“数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。”因此,鸡兔同笼问题作为数学广角教学内容之一,正是教材注重渗透思想方法,关注学习过程的重要体现。教材借助我国古代趣题“鸡兔同笼”问题,让学生应用列表、假设、方程等多种方法来解决问题。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
教学思路
(1)教材首先通过“鸡兔同笼”这一问题,激发学生解答我国古代著名数学问题的兴趣。
(2)注重体现解决“鸡兔同笼”问题的不同思路和方法。
(3)让学生进一步体会到这类问题在日常生活中的应用。
学情分析
四年级的学生,他们已具备解决鸡兔同笼问题的能力,能够理解此类问题题意,初步接触多种解题策略,会一些基本的解决数学问题的方法。
教学目标
1、知识与技能目标:通过学习,让学生掌握用图示法、假设法、列方程法等解决"鸡兔同笼"问题,让学生体验解决问题的多样性,并能用这些方法解决生活中类似"鸡兔同笼"的问题。感受古代数学问题的趣味性和解法的巧妙性。
2、过程与方法目标:学会在学习中进行尝试、比较、分析,培养解决问题的能力,并在解决问题的过程中培养学生的合作意识和逻辑推理能力。
3、情感与价值目标:体会数学知识在日常生活中的广泛应用,培养学生的探究意识和能力,激发学生学数学、用数学的兴趣;感受古代数学问题的趣味性,了解我国古代数学研究成果。
4、数学思考与问题解决:经历解决问题的过程,体验分析解决问题的方法和途经。
教学重、难点
教学重点:尝试用不同的方法解决"鸡兔同笼"问题。
教学难点:在解决问题的过程中培养学生的逻辑推理能力。
教学内容:人教版小学四年级数学下册第103—105页
01
创设游戏,提出问题
师:同学们,今天让我们一起来学习中国古代三大数学趣味题之一,“鸡兔同笼”。下面,先让我们来玩个接龙游戏,我说动物的数量,你们对应说出他们的头的个数和脚的只数。如:
师:一只鸡。
生:一只鸡,一个头,两只脚。
师:一只鸡和一只兔。
生:一只鸡和一只兔,两个头,6只脚。
……
师:那反过来如果有5个头,16只脚,该有几只鸡几只兔呢?
……
师:下面,我们来看看怎样解决这类问题的。
设计意图:创设游戏情境,很自然地引入课题。
02
出示问题,学习模式
已知:鸡和兔共有5个头,16只脚。
问题:鸡和兔各有几只?
画图法:
结合教材,生自主用画图法理解完成。
列表法(枚举法):
一一列举出鸡有0到5只及兔有5到0只时的脚数。
文字说明:
1.画图法:先画出5个头和16只脚,然后先给每个头配2只脚,剩下的脚再两只两只地加到每个头上,分配完后,4只脚的是兔,2只脚的是鸡。
2.列表法:假设4只鸡,1只兔,那么共有12只脚,与题目条件不符;假设3只鸡,2只兔,那么共有14只脚,也不符合条件;假设3只鸡,2只兔,那么共有16只脚,刚好符合题目条件。
设计意图:数形结合,以画促思,更好地帮助学生理解题意,同时激发学生学习兴趣。
03
例题讲解
那现在我把数量增加一点点,你们再来算一下?(出示例1)
例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?
1.尝试与猜想(分小组合作,活动后汇报、交流)
四人小组,仿照引例中的按照表格模式,探讨方法,并把讨论结果综合在表格里,组长负责收集和整理相关信息,并推荐一位组员上台展示成果并分享方法。
画图法:
8个头,26只脚
兔有( )只,鸡有( )只。
列表法(枚举法):
兔有( )只,鸡有( )只
经过同学们的小组交流,合作探讨,基本解决了这个问题,而且你们善于观察和总结规律,老师为你们感到高兴。以上的方法属于一种猜测和推算的过程,这些方法在对于一些数字简单的题目还是可行的,但是如果数字较大,以上两种方法操作起来就有些难度了,我们能不能用列式的方法来解决这个问题呢?下面我们一起来探讨一下。
2.假设与探究
假设全是鸡
师:突然传来一阵鞭炮声,兔子们吓得全都用前面两只脚捂住耳朵,站立了起来。这时,兔子和鸡一样只有两只脚站在地上。同学们,听到这里,你想到了什么?你能列式解决这个问题吗?
(小组合作探究,师生再交流)
生:我们是这样想的:兔子都用2只前脚捂住耳朵,用2只后脚站了起来,这时每一个头就对应着有2只脚站在地上(即可假设8个头都是鸡头),此时站在地上的脚的个数是8×2=16只。
师:算式里的8表示什么?2又表示什么?结果的16只脚是什么的脚?
生:8表示“假设8个头都是鸡的头”,2表示“每只鸡有2只脚”,16只脚是站在地上的脚。而之前数有26只脚,少了26-16=10只脚,这10只脚是兔子捂耳朵的前脚,而每只兔子有2只前脚,所以兔子的只数是:10÷2=5只,鸡的个数是:8-5=3只。
师:“10÷2=5”式中的10表示什么?2表示什么?
生:10表示兔子抬起捂耳朵的前脚,2表示每只兔子有2只前脚,
10÷2表示兔子的数量。
师板书:假设全是鸡:
脚的总数:8×2=16(只脚)
少了的脚数:26-16=10(只脚)
一只兔比一只鸡多的脚数:4-2=2(只脚)
兔子:10÷2=5(只)
鸡:8-5=3(只)
师:以上的方法就是假设法,假设全是鸡,先算出脚的假设总数,然后对比实际总数,再用少了的脚数除以2(4-2=2)就可以算出兔子的数量了。
假设全是兔
师:鞭炮声停了,兔子们都把前脚放回到地上,这时所有的鸡看到兔子被鞭炮声吓倒,都笑得站不稳,用两只翅膀撑到地上,变成了鸡好像也有4只脚的样子。你又想到了什么?
(小组合作探究,师生再交流)
生2:我们是这样想的:鸡都把翅膀撑到地上当“脚”了(即可假设8个头都是兔头),这时地上的脚的总数是8×4=32只,但实际上只有26只脚,多出来的“脚”32-26=6只,多出来的这6只“脚”实际上是鸡的翅膀来的,每只鸡有2个翅膀,所以鸡的个数有6÷2=3(只),兔的个数有8-3=5(只)。
师板书:假设全是兔:
脚的总数:8×4=32(只脚)
多了的脚数:32-26=6(只脚)
一只兔比一只鸡多的脚数:4-2=2(只脚)
鸡:6÷2=3(只)
兔子:8-3=5(只)
师:同学们说得太好了!我们可以把刚才的这两种解决问题的方法称为“假设法”——假设怎么样,然后怎么样。经过这两道题的观察和分析,我们不难发现,假设全是鸡,就会先求出兔的只数;假设全是兔,就会先求出鸡的只数。
设计意图:拟人化的比喻,让学生兴趣盎然。
04
渗透文化,激发情感
师:同学们,让我们闭上眼睛穿越时空回到1500年前。在一间学堂里,一位先生拿着一本数学名著《孙子算经》,摇头晃脑地读着:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”同学们,你们能用我们刚才学习的几种方法帮帮古代的学生们吗?谁来先翻译一下这个古代数学问题的意思?然后,请各位同学用刚才学过的方法解答这个问题。
(独立完成后让学生交流,并进行板书汇报、)
师:对了,这道题的意思就是:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只?同学们都做得很好,板书的两位同学做得更加精彩。
试想:古代的人又是怎样解决这类问题的呢?同学们,还有不同的解决方法吗?
设计意图:渗透古代数学思想,适时适地进行思想教育,创设课堂数学文化氛围。
05
畅谈收获
师:今天的课堂学习有趣吗?大家有哪些收获?
生1:……
生2:……
……
师:今天,我们通过了小组合作、自主探究。学习了用画图、列表和假设的方法来解决“鸡兔同笼”的问题,希望你们能用今天学到的方法去解决实际生活中的数学问题。
设计意图:巩固解决“鸡兔同笼”问题的基本方法,了解古时候的解法,使学生对我国的古代文化产生浓厚的兴趣,最后的小结梳理一下几种方法,引导学生反思学过的方法,为以后的学习奠定基础。
课后反思:在上这节课之前,我已经预想到了学生理解方面可能会存在偏差,同课室同事谈到往届学生对鸡兔同笼这类问题的解决途径很是模糊。我有意识细琢磨了一下课堂课堂会出现的情况。于是,课堂上先游戏引导,再通过画图、列表法的展示,学生们一下子眼界开阔,思路瞬间明朗化,直到后面的假设法的出现,学生对鸡兔同笼问题都不难理解了。假设法作为一种基本方法,给学生讲通讲透,能够做到举一反三解决此类问题就足够的。本计划课堂上渗透用方程方法解决问题,由于四年级学生未接触方程和课堂时间关系,未提及这一方法,希望学生们在后续的学习过程中逐步拓展更多的解决途经。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《小学数学四年级《鸡兔同笼》教学设计》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/799575.html
- 上一篇:《请回答1988》观后感
- 下一篇:小学文言文《囊萤夜读》教学设计