余弦定理的证明方法
在△abc中,ab=c、bc=a、ca=b
则c^2=a^2+b^2-2ab*cosc
a^2=b^2+c^2-2bc*cosa
b^2=a^2+c^2-2ac*cosb
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过a作ad⊥bc于d,则bd+cd=a
由勾股定理得:
c^2=(ad)^2+(bd)^2,(ad)^2=b^2-(cd)^2
所以c^2=(ad)^2-(cd)^2+b^2
=(a-cd)^2-(cd)^2+b^2
=a^2-2a*cd+(cd)^2-(cd)^2+b^2
=a^2+b^2-2a*cd
因为cosc=cd/b
所以cd=b*cosc
所以c^2=a^2+b^2-2ab*cosc
在任意△abc中,作ad⊥bc.
∠c对边为c,∠b对边为b,∠a对边为a-->
bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
勾股定理可知:
ac²=ad²+dc²
b²=(sinb*c)²+(a-cosb*c)²
b²=sin²b*c²+a²+cos²b*c²-2ac*cosb
b²=(sin²b+cos²b)*c²-2ac*cosb+a²
b²=c²+a²-2ac*cosb
所以,cosb=(c²+a²-b²)/2ac
2
如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为x轴建立直角坐标系,于是c点坐标是(b,0),由三角函数的定义得b点坐标是(ccosa,csina).∴cb=(ccosa-b,csina).现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是(acos(π-c),asin(π-c))即d点坐标是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc的三边分别为a,b,c,边bc,ca,ab上的中线分别为ma.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。
第二篇:正余弦定理的多种证明方法利用向量统一正、余弦定理的证明
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法,[1]人教版中等职业教育国家规划教材《数学》(提高版)是用向量的数量积(内积)给出证明的,如是在证明正弦定理时用到:作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文通过三角函数的定义,利用向量相等和向量的模统一正、余弦定理的证明,方法较为简单。从本文的证明中又一次显示数学中“数”与“形”的完美结合。
定理:在△abc中,ab=c,ac=b,bc=a,则
(1)(正弦定理)==;
(2)(余弦定理)
c2=a2+b2-2abcos c,
b2=a2+c2-2accos b,
a2=b2+c2-2bccos a。
证明:建立如下图所示的直角坐标系,则a=(0,0)、b=(c,0),又由任意角三角函数的定义可得:
c=(bcos a,bsin a),以ab、bc为邻边作平行四边形abcc′,则∠bac′=π-∠b,
∴c′(acos(π-b),asin(π-b))
=c′(-acos b,asin b)。
根据向量的运算:
=(-acos b,asin b),
=-=(bcos a-c,bsin a),
(1)由=:得
asin b=bsin a,即
=。
第 1 页 共 2 页
同理可得:=。
∴==。
(2)由=(b-cos a-c)2+(bsin a)2=b2+c2-2bccos a,
又||=a,
∴a2=b2+c2-2bccos a。
同理:
c2=a2+b2-2abcos c;
b2=a2+c2-2accos b。
第 2 页 共 2 页
第三篇:余弦定理证明过程在△abc中,设bc=a,ac=b,ab=c,试根据b,c,a来表示a。 分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作cd垂直于ab于d,那么在rt△bdc中,边a可利用勾股定理用cd、db表示,而cd可在rt△adc中利用边角关系表示,db可利用ab-ad转化为ad,进而在rt△adc内求解。
解:过c作cd⊥ab,垂足为d,则在rt△cdb中,根据勾股定理可得: a2=cd2+bd2
∵在rt△adc中,cd2=b2-ad2
又∵bd2=(c-ad)2=c2-2c·ad+ad2
∴a2=b2-ad2+c2-2c·ad+ad2=b2+c2
-2c·ad 又∵在rt△adc中,ad=b·cosa ∴a2=b2+c2-2bccosa类似地可以证明b2=a2+c2-2accosb,c2=a2+b2-2abcosc
第四篇:余弦定理及其证明余弦定理及其证明
1.三角形的正弦定理证明:
步骤1.
在锐角△abc中,设三边为a,b,c。作ch⊥ab垂足为点h
ch=a·sinb
ch=b·sina
∴a·sinb=b·sina
得到
a/sina=b/sinb
同理,在△abc中,
b/sinb=c/sinc
步骤2.
证明a/sina=b/sinb=c/sinc=2r:
如图,任意三角形abc,作abc的外接圆o.
作直径bd交⊙o于d.
连接da.
因为直径所对的圆周角是直角,所以∠dab=90度
因为同弧所对的圆周角相等,所以∠d等于∠c.
所以c/sinc=c/sind=bd=2r
a/sina=bc/sind=bd=2r
类似可证其余两个等式。
2.三角形的余弦定理证明:
平面几何证法:
在任意△abc中
做ad⊥bc.
∠c所对的边为c,∠b所对的边为b,∠a所对的边为a
则有bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c
根据勾股定理可得:
ac^2=ad^2+dc^2
b^2=(sinb*c)^2+(a-cosb*c)^2
b^2=sin^2b*c^2+a^2+cos^2b*c^2-2ac*cosb
b^2=(sin^2b+cos^2b)*c^2-2ac*cosb+a^2
b^2=c^2+a^2-2ac*cosb
cosb=(c^2+a^2-b^2)/2ac
3
在△abc中,ab=c、bc=a、ca=b
则c^2=a^2+b^2-2ab*cosc
a^2=b^2+c^2-2bc*cosa
b^2=a^2+c^2-2ac*cosb
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过a作ad⊥bc于d,则bd+cd=a
由勾股定理得:
c^2=(ad)^2+(bd)^2,(ad)^2=b^2-(cd)^2
所以c^2=(ad)^2-(cd)^2+b^2
=(a-cd)^2-(cd)^2+b^2
=a^2-2a*cd+(cd)^2-(cd)^2+b^2
=a^2+b^2-2a*cd
因为cosc=cd/b
所以cd=b*cosc
所以c^2=a^2+b^2-2ab*cosc
题目中^2表示平方。
2
谈正、余弦定理的多种证法
聊城二中魏清泉
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教a(内容来源好 范文网:www.bsmz.neta.mb,mc,应用余弦定理证明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
4
ma=√(c^2+(a/2)^2-ac*cosb)
=(1/2)√(4c^2+a^2-4ac*cosb)
由b^2=a^2+c^2-2ac*cosb
得,4ac*cosb=2a^2+2c^2-2b^2,代入上述ma表达式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
证毕。
本网推荐更多精彩文章:余弦定理证明过程
怎么证明余弦定理
余弦定理的多种证明
余弦定理的三种证明
用复数证明余弦定理
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《余弦定理的证明方法(精选多篇)》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/382213.html
- 上一篇:信用卡工作证明模板(精选多篇)
- 下一篇:信用卡单位收入证明(精选多篇)