高一物理 知识点总结素材 新人教版必修2
高一上物理期末考试知识点复习提纲
1.质点(A)(1)没有形状、大小,而具有质量的点。
(2)质点是一个理想化的物理模型,实际并不存在。
(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的
形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。
2.参考系(A)(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。对参考系应明确以下几点:
①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。
②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。
③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系3.路程和位移(A)
(1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。
(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。(3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与
位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。
CCBBAA图1-1
(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。
比如说某人从O点起走了50m路,我们就说不出终了位置在何处。4、速度、平均速度和瞬时速度(A)
(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内
的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻
附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率5、匀速直线运动(A)
(1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。
根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路
程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。
(2)匀速直线运动的xt图象和v-t图象(A)
.-1(1)位移图象(x-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体V/msV1运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。20(2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。10t/sO由图可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一个质点沿正方51015-10向以20m/s的速度运动,另一个反方向以10m/s速度运动。V2
用心爱心专心
6、加速度(A)
(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时
间的比值,定义式:avtv0t
(2)加速度是矢量,它的方向是速度变化的方向
(3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动;若加速度的方向与速度方
向相反,则则质点做减速运动.7、用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A)1、实验步骤:
(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路(2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码.(3)将纸带固定在小车尾部,并穿过打点计时器的限位孔
(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带.(5)断开电源,取下纸带
OABCDE3.07(6)换上新的纸带,再重复做三次2、常见计算:(1)B(2)aABBC2TT12.38,CBCCD2T
27.8749.62.77.40CBCDBCT2
8、匀变速直线运动的规律(A)
(1).匀变速直线运动的速度公式vt=vo+at(减速:vt=vo-at)(2).vvtvo2图2-5此式只适用于匀变速直线运动.
V/m(3).匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot-at2/2)
622225①t0t0(4)位移推论公式:S(减速:S)42a2a32(5).初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间②1t/s隔内的位移之差为一常数:Δs=aT2(a----匀变速直线运动的加速度012345678T----每个时间间隔的时间)
9、匀变速直线运动的xt图象和v-t图象(A)
10、自由落体运动(A)
(1)自由落体运动物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。(2)自由落体加速度
(1)自由落体加速度也叫重力加速度,用g表示.
(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。(3)通常情况下取重力加速度g=10m/s2
(3)自由落体运动的规律vt=gt.H=gt/2,vt=2gh
11、力(A)1.力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。2.力的三要素:力的大小、方向、作用点。
3.力作用于物体产生的两个作用效果。使受力物体发生形变或使受力物体的运动状态发生改变。4.力的分类:
⑴按照力的性质命名:重力、弹力、摩擦力等。
用心爱心专心
-2-
2⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。12、重力(A)
1.重力是由于地球的吸引而使物体受到的力
⑴地球上的物体受到重力,施力物体是地球。⑵重力的方向总是竖直向下的。
2.重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集
中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。①质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。
②一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。3.重力的大小:G=mg13、弹力(A)
1.弹力⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。
2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
3.弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大.
弹簧弹力:F=Kx(x为伸长量或压缩量,K为劲度系数)
4.相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.14、摩擦力(A)
(1)滑动摩擦力:f=μFN
说明:a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关.
(2)静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.
大小范围:O
注意:(1)力的合成和分解都均遵从平行四边行法则。(2)两个力的合力范围:F1-F2≤F≤F1+F2(3)合力可以大于分力、也可以小于分力、也可以等于分力(4)两个分力成直角时,用勾股定理或三角函数。16、共点力作用下物体的平衡(A)
1.共点力作用下物体的平衡状态
(1)一个物体如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态
(2)物体保持静止状态或做匀速直线运动时,其速度(包括大小和方向)不变,其加速度为零,这是共点力作用下物体处于平衡状态的运动学特征。
2.共点力作用下物体的平衡条件
共点力作用下物体的平衡条件是合力为零,亦即F合=0
(1)二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。(2)三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡
(3)若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:F合x=F1x+F2x+………+Fnx=0
F合y=F1y+F2y+………+Fny=0(按接触面分解或按运动方向分解)19、力学单位制(A)
1.物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算
中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做
导出单位。
2.在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位
制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。17、牛顿运动三定律(A和B)1.惯性:保持原来运动状态的性质,
牛顿运动定律
牛顿运动定律的应用牛顿第三定律质量是物体惯性大小的唯一量度
牛顿第一定律2.平衡状态:静止或匀速直线运动3.力是改变物体运动状态的原因,即产生加速度的原因
1.内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度方向与合外力方向一致
牛顿第二定律2.表达式:F合=ma
3.力的瞬时作用效果:一有力的作用,立即产生加速度4.力的单位的定义:使质量为1kg的物体产生1m/s2的加速度的力就是1N
1.物体间相互作用的规律:作用力和反作用力大小相等、方向相反,作用在同一条直线上
2.作用力和反作用力同时产生、同时消失,作用在相互作用的两物体上,性质相同3.作用力和反作用力与平衡力的关系1.已知运动情况确定物体的受力情况2.已知受力情况确定物体的运动情况3.加速度是联系运动和力关系的桥梁
用心爱心专心
扩展阅读:人教版高一物理必修二知识点全套
曲线运动
一、运动的合成与分解1.曲线运动
匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动;
变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。(1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。物体能否做曲线运动要看力的方向,不是看力的大小。(2)特点:
①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。②曲线运动轨迹上某点的切线方向表示该点的速度方向。③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。
④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解)(1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性
①等时性:合运动所需时间和对应的每个分运动所需时间相等。②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。
③独立性:每个分运动都是独立的,不受其他运动的影响
④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则
⑤相关性:合运动的性质是由分运动性质决定的
(2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。①运动的分解要根据力的作用效果(或正交分解)②物体的实际运动是合运动
③速度、时间、位移、加速度要一一对应
④如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则(3)合运动的性质取决于分运动的情况:
①两个匀速直线运动的合运动仍为匀速直线运动。
②一个匀速运动和一个匀变速运动的合运动是匀变速运动,两者共线时,为匀变速直线运动,两者不共线时,为匀变速曲线运动。
③两个匀变速直线运动的合运动为匀变速运动,当合运动的初速度与合运动的加速度共线时为匀变速直线运动,当合运动的初速度与合运动的加速度不共线时为匀变速曲线运动。3.小船渡河问题
一条宽度为L的河流,水流速度为Vs,船在静水中的速度为Vc(1)渡河时间最短:
设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V1=Vcsinθ,渡河所需时间为:tLVcsin
当船头与河岸垂直时,渡河时间最短,tminLVc(与水速的大小无关)渡河位移:sLvst222
(2)渡河位移最短:
①当Vc>Vs时Vs=Vccosθ渡河位移最短sminL;渡河时间为tLvsin
船头应指向河的上游,并与河岸成一定的角度θ=arccosVs/Vc
②当Vc>Vs时以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角最大,Vc=Vscosθ,船头与河岸的夹角为:θ=arccosVc/Vs。渡河的最小位移:sLcosVsVcL
船漂的最短距离为:xmin(VsVccos)sminvssinLVcsin;
渡河时间:tLvcsin。
4.关联速度和绳(杆)端点速度分解
一根轻绳,沿绳的速度、位移、加速度的大小处处相等。绳(杆)端点速度分解为沿绳的速度和垂直绳的速度。如图有vAcosvBcos
二、平抛运动::将物体沿水平方向抛出,只在重力作用下的运动为平抛运动1.运动特点:(1)只受重力;(2)初速度与重力垂直。2.运动性质:平抛运动是初速度为零的匀变速曲线运动。
3.处理方法:平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动。4.基本规律:
(1)水平方向:匀速直线运动vxv0x=vot(2)竖直方向:自由落体运动vygty(3)合速度:v2212gt
2vxvytanvyvxgtvo(θ为合速度与水平方向的夹角)
(4)合位移:sxytan22yxg2vot(α为合位移与水平方向的夹角)
(5)轨迹:yg2v20x平抛物体运动的轨迹是一条抛物线
2(6)推论:①tinθ=2tinα②平抛物体任意时刻瞬速度方向的反向延长线交水平位移中点。(7)特点:①运动时间由高度决定t2hg,与v0无关②竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立
③Δt时间内速度改变量相等,即△v=gΔt,ΔV方向是竖直向下的
5类平抛:当物体所受的合外力恒定且与初速度垂直时,做类平抛运动(处理方式和平抛运动处理方式一样)三、圆周运动
1.描述述圆周运动物理量:
(1)线速度:做匀速圆周运动的物体所通过的弧长与所用的时间的比值(描述质点沿切线方向运动的快慢)大小:v=stm/s
方向:某点线速度方向沿圆弧该点切线方向
(2)角速度:做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值(描述质点绕圆心转动的快慢)
大小:矢量单位:rad/s
t(3)周期和转速
周期(T):做圆周运动物体一周所用的时间(s)
转速(n):做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数(r/sr/min)(4)V、ω、T、n的关系:2T2n,v=r2rT2nr
T、n、ω三个量中任一个确定,另两个量就确定了,但v还和半径r有关。
2.向心力
(1)作用:产生向心加速度,只改变线速度的方向,不改变速度的大小,向心力对做圆周运动的物体不做功。(2)大小:F向mv2rmrm(22T)rm(2n)rmvma向
22(3)方向:总是沿半径指向圆心,时刻在变化,即向心力是个变力.
说明:向心力是按效果命名的力,不是某种性质的力,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定。
非匀速圆周运动(不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动)合力的处理:切线方向分力提供切向加速度来改变速度大小;半径方向分力提供向心加速度来改变速度方向。注意:区分匀速圆周运动和非匀速圆周运动的力的不同3.向心加速度(描述线速度方向改变的快慢)(1)大小:a向v2rr(22T)r(2n)rv
22(2)方向:总是指向圆心,方向时刻在变化
(3)注意:若ω相同,a与r成正比;若v相同,a与r成反比;若是r相同,a与ω2成正比,与v2也成正比。4.匀速圆周运动
(1)特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的。.
(2)性质:匀速圆周运动是速度大小不变而速度方向时刻改变,加速度大小不变、方向时刻改变的变加速曲线运动。
(3)加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力。
(4)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.5.关联速度
①同轴转动的物体:各点角速度ω相等,而线速度v=ωr与半径r成正比
②链条传动、齿轮传动、皮带传动(不打滑):两轮边缘的各点线速度大小相等,而角速度ω=v/r与半径r成反比。
6.向心运动和离心运动
提供的向心力等于所需要的向心力时物体做匀速圆周运动提供的向心力大于所需要的向心力时物体做向心运动提供的向心力小于所需要的向心力时物体做离心运动7.典型模型
(1)火车转弯:
如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供mgtanmv2r
vgrtanv增加,外轨挤压,如果v减小,内轨挤压
(飞机转弯的向心力由升力和重力提供)(2)圆锥问题
Nsinmg
Ncosmrtan2gr2grtan
(3)竖直面内圆周运动(非匀速圆周运动)
①无支撑物情况:绳栓小球和小球在圆内轨运动(弹力只能指向圆心)
小球机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。最低点:mgF弹mvmRmvminR22
最高点:F弹mg
过最高点临界条件:mgmv临R2v临grvgR是过最高点条件
②有支撑物情况:杆栓小球和小球在圆双轨运动(弹力既能指向圆心又能背离圆心)最低点:mgF弹mvmRmvminR22
最高点:F弹mg
过最高点临界条件:F弹mgv临0v当v当v当v0是过最高点条件
gR时物体受到的弹力必然是向下的gR时物体受到的弹力必然是向上的
gR时物体受到的弹力恰好为零。
当弹力大小Fmg时,向心力只有一解:F+mg;当弹力F=mg时,向心力等于零。③等效竖直面内圆周运动
恒力的合力指向圆心位置等效为最高点(无支撑物):临界速度满足F恒合恒力的合力背离圆心位置等效为最低点:速度最大(4)汽车过拱桥(弹力只能背离圆心)径向:mgcosFNm2mv临R2
v2r切向:mgsinθ-f=ma
最高点:mgFNmvminr2(汽车不平衡)
注:若最高点mgmvr即vgr时物体恰好做平抛运动。
(5)汽车过凹路(弹力只能指向圆心)径向:mgcosFNm2v2r切向:mgsinθ-f=ma
最低点:FNmgmvmr(汽车不平衡)
万有引力定律人造卫星
一、地心说和日心说
1.地心说的内容:地球是宇宙中心,其他星球围绕地球做匀速圆周运动,地球不动。
2.日心说的内容:太阳是宇宙的中心,其他行星围绕地球匀速圆周运动,太阳不动。日心说是波兰科学家天文学家哥白尼创立的。
3.开普勒三定律
德国科学家开普勒在研究麦天文学家第谷资料时得出开普勒三定律
(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。(2)任何一个行星与太阳的连线在相等的时间内扫过的面积相等。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。即R3/T2=k二、万有引力定律
1.内容:自然界任何两个物体之间都存在着相互作用的引力,两物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.表达式:F=G
m1m2r2
引力常量G=6.67×10-11Nm2/kg2(英)卡文迪许扭秤测得“能称出地球质量的人”2.适用条件:①公式适用于质点间的相互作用②当两个物体间的距离远大于物体本身的大小时,物体可视为质点③均匀球体可视为质点,r为两球心间的距离
3.万有引力遵守牛顿第三定律,即它们之间的引力总是大小相等、方向相反.4.推导:
5.万有引力和重力
重力是万有引力的一个分力,万有引力的另一个分力提供物体随地球自转时需要的向心力,
F向mr物体跟地球自转的向心力随维度增大而减小,故物体的重力随纬度的变大而变
2大,即重力加速度g随纬度变大而变大。
mgGMm(Rh)2物体的重力随高度的变高而减小,即重力加速度g随高度的变高而减小。
GMmR2不计地球自转时mg得黄金代换式gR2GM
6.用万有引力定律分析天体的运动
(1)基本方法:①把天体运动近似看作匀速圆周运动②万有引力提供向心力即GMmr2mv2rmr2mr(2T)ma向mgr
2(2)估算天体的质量和密度①“T、r”法:由G
Mmr2=m
4T22得:M=
4rGt223.
即只要测出环绕星体M运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量。
由MV,V43R得:33r233GTR。R为中心天体的星体半径
3GT2当r=R时,即卫星是近地面卫星时,②“g、R”法由
GMmR2,由此可以测量天体的密度.
mg得M43gRG32
3g4GR由MV,VR得
三、人造卫星
1.卫星的绕行速度、角速度、周期与半径的关系(1)由GMmr2mv2r2得:vGMr即轨道半径越大,绕行速度越小
(2)由GMmr2mr得:GMr2GMr3即轨道半径越大,绕行角速度越小
(3)由
GMmr2ma得:a2T即轨道半径越大,绕行加速度越小
4RGM23(4)由
GMmr2mr()得:T2即轨道半径越大,绕行周期越大
2.三种宇宙速度
(1)第一宇宙速度:v1=7.9km/s是人造地球卫星的最小发射速度,最大绕行速度。推导:
方法一:地球对卫星的万有引力提供卫星做圆周运动的向心力由GmMmv2Rh2Rh得vGMRh7.9km/s
方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力由mgmv2R得vgR7.9km/s
(2)第二宇宙速度:v2=11.2km/s是物体挣脱地球的引力束缚需要的最小发射速度。(3)第三宇宙速度:v3=16.7km/s是物体挣脱太阳的引力束缚需要的最小发射速度。3.近地卫星特点
(1)近地卫星的轨道半径r可以近似地认为等于地球半径R(2)近地卫星的线速度大小为v1=7.9km/s(3)近地卫星的周期为T=5.06×10s=84min,是人造卫星中周期最小的。4.地球同步卫星(通信卫星)
所谓地球同步卫星是指相对于地面静止的人造卫星。特点:
(1)只能定点在赤道正上方
(2)同步卫星的角速度、周期与地球自转的角速度、周期相同(3)同步卫星距地面高度一定由GMm(Rh)23
m4T22(Rh)得h3GMT422R3.610km
4(4)同步卫星的线速度一定v=3.08km/s5.变轨问题
卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面
如图所示,在轨道A点,GMmr2mv2r,卫星做离心运动,但是随着卫星远离地球,
万有引力做负功,速度减小,虽然随半径增大万有引力减小,但m2v2r减小的多,所以到远
地点B时GMmr2mvrv2,卫星做向心运动所以卫星轨道是椭圆。若在B点增大速度,让速
度增大到GMmr2mr(由卫星自带的推进器完成),卫星将在该轨道做匀速圆周运动。
①低轨变高轨,需要加速离心
②高轨变低轨,需要减速向心
5.双星问题
两颗星角速度、周期相等,向心力均由两者间万有引力提供。Gm1m2r2m1r1G2m1m2r2m2r2rr1r2
2(注:万有引力定律公式FGm1m2r2中的r指的是两个物体间的距离,Fmr中的
2r,对于椭圆轨道指的是曲率半径,对于圆轨道指的是圆半径。)a1a2m1m2
r2r1m1m2
v1v2m2m1
6.星球瓦解问题
GMm对于赤道上的某一个物体,
R2mgmv2r,当速度增加时,重力减小,向心力增加,当mg=0即当速度瓦解的临界状态
7.卫星的超重和失重
GMmR2mv2RvGMR(即第一宇宙速度)时,星球处于
(1)人造卫星中在发射阶段,尚未进入预定轨道的加速阶段,具有竖直向上的加速度,卫星内的所有物体处于超重状态,卫星与物体具有相同的加速度(2)卫星进入轨道后正常运转时,卫星与物体处于完全失重
机械能
一、功
1.功:功等于力和沿该力方向上的位移的乘积。
(1)做功的两个必要因素:力和物体在力的方向上的位移。
(2)公式:W=FScosθ(θ为F与s的夹角)适用恒力做功求解。单位:焦耳1J=1Nm。(3)功是过程量,是力对空间的积累效应,和位移、时间相对应。求功必须指明是“哪个力”“在哪个过程中”做的功。
(4)功是标量,没有方向,但有正负。正功表示动力做功,负功表示阻力做功,功的正负表示能的转移方向。
(5)由公式W=Fscosθ求解两种处理办法:
①W等于力F乘以物体在力F方向上的分位移scosθ,即将物体的位移分解为沿F方向上和垂直F方向上的两个分位移s1和s2,则F做的功W=Fs1=Fscosθ。
②W等于力F在位移s方向上的分力Fcosθ乘以物体的位移s,即将力F分解为沿s方向和垂直s方向的两个分力F1和F2,则F做功W=F1s=Fscosθ。
(6)功的物理含义:功是能量转化的量度,即:做功的过程是能量的一个转化过程,这个过程做了多少功,就有多少能量发生了转化.对物体做正功,物体的能量增加;对物体做负功,也称物体克服阻力做功,物体的能量减少。2.功的正负
(1)当0≤θ<900时W>0,力对物体做正功,动力
(2)当θ=90时W=0,力对物体不做功
(3)当900<θ≤1800时W<0,力对物体做负功或说成物体克服这个力做正功,阻力3.合力功的计算
(1)用平行四边形定则求出合外力,再根据w=F合scosθ计算功.注意θ应是合外力与位移s间的夹角,且合力为恒力。
(2)分别求各个外力的功,再求各个外力功的代数和。4.变力做功问题
(1)将变力转化为恒力,再用W=Fscosθ计算
(2)滑动摩擦力、空气阻力等,在曲线运动或往返运动时,若变力F大小不变,功等于力和路程的乘积
(3)当变力F是位移s的线性函数时,求出变力F对位移的平均力FF1F220
,W=Fs
(4)作出变力F随位移变化的图象,图象与位移轴所围均“面积”即为变力做的功(5)机车启动中若功率恒定,则可用W=Pt求解
(6)根据动能定理或能量转化和守恒定律求变力做的功5.摩擦力的做功
(1)静摩擦力做功的特点
①静摩擦力可以做正功,可以做负功,也可以不做功。
②在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。
③相互摩擦的系统内,一对静摩擦力所做功的代数和总为零。(2)滑动摩擦力做功的特点
①滑摩擦力可以做正功,可以做负功,也可以不做功。②一对滑动摩擦力做功的过程中,能量的转化有两个方面:一是相互摩擦的物体之间机械能的转移;二是机械能转化为内能。③相互摩擦的系统内,一对滑摩擦力所做功的代数和不为零,转化为内能值等于滑动摩擦力与相对位移的乘积QFfs相对。
推导:滑动摩擦力对木块所做功为W木块=-f(d+S)
滑动摩擦力对木板所做功为W木板=fsW木块+W木板=-fd
6.一对作用力和反作用力做功的特点
(1)一对作用力和反作用力在同一段时间内,可以都做正功、或者都做负功,或者一个做正功、一个做负功,或者都不做功。
(2)一对作用力和反作用力在同一段时间内做总功可能为正、可能为负、可能为零。(3)一对作用力反作用力的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
二、功率:功跟完成这些功所用时间的比值叫做功率。功率是描述做功快慢的物理量。(1)功率的定义式:PWt,所求出的功率是时间t内的平均功率。
(2)功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。
该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。
(3)单位:瓦(w),千瓦(kw)
(4)额定功率:机器长时间正常运行时的最大输出功率。实际功率小于或等于额定功率。(5)汽车的启动问题:当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=Fv和F-f=ma①以恒定功率启动
由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值vmPmPm。可见恒
Ff定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。
12加速度减小的加速运动:①vmPmPm②Ptfsmvm
Ff2②以恒定加速度启动
由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最PP大速度为vm这一加速过程发动机做的功只能用W=Fs计算,不能用W=Ptmmvm,
Ff计算(因为P为变功率)。此后汽车功率恒定,随着v的继续增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值vmPmPm
FfPvv12匀加速直线运动:①F-f=ma②vmm③t1m④s1mt1或s1at1
Fa22112加速度减小的加速运动:⑤vmPm⑥Pt2fs2mvmmvmf22启动总时间:tt1t2;加速总位移:ss1s2
注意:两种加速运动过程的最大速度是相同的,但是恒定功率启动快,但是对牵引力有
最大值限制的情况不适用。三、动能、势能、动能定理1.动能
(1)动能:物体由于运动而具有的能量叫动能。
表达式为:Ek12mv。
2(2)对动能的理解
①v是瞬时速度。动能是一个状态量,它与物体的运动状态对应。
②动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值。③动能是相对的,它与参照物的选取密切相关。高中研究动能时只能选地面为参考系。2.重力势能(Ep):物体由于受到重力的作用,而具有的与其相对位置有关的能量叫做重力势能。
(2)表达式:Ep=mgh(h是重心相对于零势能面的高度)
(3)相对性①需要选取零势能面,一般选大地或整个过程的最低点为零势能面。②势能的正负和大小是相对于零势能面的,高速低于零势能面,重力势能为负值,高于零势能面,重力势能为正值,正负表示大小。
(4)系统性:重力势能是物体和地球共有的,一般说物体的重力势能。(5)重力做功特点:①重力做功与路径无关,与初末位置的高度差有关。
②重力做正功,重力势能减小,重力做负功,重力势能增大,重力做的功等于重力势能变化量的负值即WGEpEp1Ep2
3.弹性势能(Ep):发生形变的物体,在恢复原状时能够对外做功,因而具有能量,叫弹性势能,跟物体形变和材料有关。
(1)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大劲度系数越大弹簧的弹性势能越大。Ep12kx
(2)相对性:弹性势能一般取形变量x=0处为零势能点
(3)系统性:弹性势能属于系统所有,即由弹簧各部分组成的系统所共有,而与外界物体无关。
(4)弹力做功特点:①弹力做功与路径无关。
②弹力做正功,弹性势能减小,弹力做负功,弹性势能增大,弹力做的功等于弹性势能变化量的负值即W弹Ep4.动能定理
(1)内容:所有外力对物体做的总功(也叫合外力的功)等于物体动能的变化量.(2)表达式:W合Ek2Ek112mv22212mv1
22推导:物体只在一个恒力作用下做直线运动,根据牛顿第二定律F=ma,根据运动学公式2as=vt一v带入w=FS=ma×即W12mv222
20V2V12a
12mv1
2(3)理解:
①“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.
②动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理,原因是系统内所有内力做的总功不一定是零。
③各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和.④动能定理是标量式.功和动能都是标量,不能在某一个方向上应用动能定理。⑤动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。但动能定理适用于恒力、变力;适用于直线运动和曲线运动;适用于瞬间过程和时间长的过程。⑥对动能定理中的位移与速度必须相对同一参照系,以地面为参考系。
⑦动能定理用来求初末速度、初末动能、合力、分力、功、合位移、分位移,但是除机车恒定功率启动情况一般不用动能定理求时间和加速度。(4)应用动能定理解题的步骤
①确定研究对象和研究过程。动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。②对研究对象受力分析。(研究对象以外的物体施于研究对象的力都要分析,含重力)。③写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。④写出物体的初、末动能。按照动能定理列式求解。四、机械能守恒定律
1.内容:在只有重力(和系统内弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。2.条件:
(1)对某一物体,若只有重力(或系统内弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.
(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒。注:①竖直方向匀速直线运动和竖直方向匀速圆周运动机械能不守恒。
②对绳子突然绷紧,物体间非弹性碰撞等除题目特别说明,必定有机械能损失,碰撞后两物体粘在一起的过程中一定有机械能损失。3.机械能守恒定律的各种表达形式
(1)E1E2Ek1Ep1Ek2Ep2需要选择重力势能的零势能面(2)EpEkEp减Ek增(3)EAEBEA减EB增
4.应用机械能守恒定律解题的基本步骤:(1)根据题意选取研究对象(物体或系统)。.
(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒。
(3)恰当地选取零势面,确定研究对象在过程中的始态和末态的机械能。
(4)根据机械能守恒定律的不同表达式列式方程,若选用了增(减)量表达式。五、能量转化和守恒定律
能量既不能凭空产生,也不能凭空消失,它只能从一种形式的能转化为另一种形式的能,或者从一个物体转移到另一个物体,能的总量保持不变。
(1)某种形式的能的减少量,一定等于其他形式能的增加量.(2)某物体能量的减少量,一定等于其他物体能量的增加量.六、功能关系
功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与某一时刻(某一位置)相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。做功的过程是能量转化的过程,功是能量转化的量度。1.物体动能的增量由外力做的总功来量度:W外=ΔEk,这就是动能定理。2.物体重力势能的增量由重力做的功来量度:WG=-ΔEP,这就是势能定理。3.物体机械能的增量由重力以外的其他力做的功来量度:W其它=ΔE机,(W其它表示除重力以外的其它力做的功),这就是机械能守恒定律。4.弹性势能的改变由弹力做功来完成
5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。QFfs相对(s为这两个物体间相对移动的位移)。
友情提示:本文中关于《高一物理 知识点总结素材 新人教版必修2》给出的范例仅供您参考拓展思维使用,高一物理 知识点总结素材 新人教版必修2:该篇文章建议您自主创作。
来源:网络整理 免责声明:本文仅限学习分享,如产生版权问题,请联系我们及时删除。
《高一物理 知识点总结素材 新人教版必修2》
由互联网用户整理提供,转载分享请保留原作者信息,谢谢!
http://m.bsmz.net/gongwen/423561.html